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Abstract

Public regulation is increasingly facing competition from “private politics”in the form of activism
and corporate self-regulation. However, its effectiveness, welfare consequences, and interaction with
public regulation are poorly understood. This paper presents a unified dynamic framework for
studying the interaction between public regulation, self-regulation, and boycotts. We show that
the possibility of self-regulation saves on administrative costs, but also leads to delays. Without an
active regulator, firms self-regulate to preempt or end a boycott and private politics is beneficial for
activists but harmful for firms. With an active regulator, in contrast, firms self-regulate to preempt
public regulation and private politics is harmful for activists but beneficial for firms. Our analysis
generates a rich set of testable predictions that are consistent with the rise of private politics over
time and the fact that there is more self-regulation and activism in the US, while public regulation
continues to be more common in Europe.
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1 Introduction

For many companies, their business models or practices result in negative externalities that markets

fail to correct. These externalities may come in different forms. Some, like water and air pollution,

are relatively easy to measure and quantify, while others are more intangible, such as the direct

disutility that some people may experience if a company uses child labor, provides poor workplace

conditions, or logs tropical forests, thereby endangering species and biodiversity. The traditional

solution to such externalities involves the government in one way or another, but more recently, a

phenomenon called private politics has started to receive more attention. It is now quite common

for activist groups that seek to curb or limit certain practices to not necessarily engage in public

channels like lobbying or political campaigns; instead, they often start activist campaigns and

threaten to organize a boycott if their demands are not met.1 The rise of activism has led to an

increasing number of companies or even entire industries choosing to self-regulate and restrict their

practices, which has put an end to the government’s monopoly on regulation.

Textbook examples of effective and successful boycotts include Greenpeace’s boycott of Shell

in 1995 over Shell sinking the outdated offshore oil storage facility Brent Spar, and the boycott

of Citigroup by the Rainforest Action Network (RAN) from 2000 to 2004 over Citigroup’s loans

to companies engaged in unsustainable mining and logging. The campaign against Shell included

organizing a successful boycott in Germany where sales at Shell gas stations fell by as much as 40

percent and an occupation of Brent Spar by Greenpeace activists. Although Shell initially gave the

impression that it had made a firm decision, the company gave in after two months of protests.2

The campaign by RAN against Citigroup lasted much longer, involving episodes such as Columbia

University students cutting their Citibank cards as well as picketing the residences of Citigroup’s

senior executives. However, although Citigroup was able to stand firm by its decision to not give in

for several years, also this boycott was ultimately successful (Baron and Yurday, 2004).

Not all firms face the same regulatory environment, understood as the combination of pres-

ence or influence of a motivated government regulator and/or powerful activist groups; this varies

substantially by industry and by jurisdiction. For example, producers of specialized medical equip-

1According to Glickman (2009:302-310), the late 1990s saw a big increase in boycotts. This was accompanied by
a growing number of issues that captured the attention of activists. While the boycotts of the 1980s were primarily
aimed at companies collaborating with the regime in South Africa, in the 1990s many new issues, such as animal
rights, emerged.

2See Diermeier (1995). The statement released by Shell on June 20, 1995, included this: “Shell’s position as a
major European enterprise has become untenable. The Spar had gained a symbolic significance out of all proportion
to its environmental impact. In consequence, Shell companies were faced with increasingly intense public criticism,
mostly in continental northern Europe. Many politicians and ministers were openly hostile and several called for
consumer boycotts.”
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ment (goods with few substitutes, supplied to hospitals) are likely to be concerned with government

regulation only, whereas airlines (a competitive, consumer-oriented industry) should be concerned

with both government regulation and consumer activism. The cross-country differences are also

noteworthy: while the government has a more traditional regulatory role in Europe, self-regulation

and activism are more common in the US. The reasons behind these stark differences, as well as

the causes and consequences of the rise of private politics and the changing regulatory environment

are poorly understood and barely discussed in the formal literature.

We seek to close this gap by studying public and private regulation within a single framework.

This framework allows us to address a number of fundamental questions previously ignored in the

literature, specifically:

(1) WHEN does private politics improve effi ciency?

(2) WHO benefits and who loses from the emergence of private politics?

(3) WHAT is the relationship between private politics and public regulation, and do they substi-

tute or complement each other?

(4) HOW can we explain the rise of private politics over time, and the differences between the

US and Europe?

These questions are important for several reasons. If private politics becomes more common,

we need to understand whether it can or even should replace public regulation, or whether private

politics needs the presence of a government regulator instead. This concern is discussed by Doh

and Guay (2006:51): “Some observers now regard NGOs as a counterweight to business... others

suggest that there may be risks of ‘privatizing’public policies that deal with environmental, labour,

and social issues.”It is even more important to understand the interaction between the two in order

to evaluate the total regulatory pressure on an industry. Such evaluations are not only important

to appropriately choose domestic regulation, but also when comparing concessions, e.g., in trade or

climate negotiations.

We provide a model that abstracts away from specific details about the country and the

industry– such as the competitive environment or the nature of the good produced– and instead it

focuses on the regulatory environment. More precisely, there is a firm (F) which faces a government

regulator (R), or an activist group (A), or both. The firm produces and sells goods, but does so in

a way that the activist group believes to be wrong or harmful. The firm is aware of the activists’

concern and may decide to adjust its practice (i.e., self-regulate). Such self-regulation, however, is

costly to the firm. As long as no regulation is in place, the activist that runs a campaign against the

firm can decide to initiate a costly boycott. The boycott ends if the firm self-regulates or the activist
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gives up. To model boycotts, we develop a novel model of war-of-attrition with private information,

where each player learns its cost parameter only at the beginning of the boycott. Thus, even though

both players use pure strategies in equilibrium during the boycott, the time where either of them

gives in during the boycott appears to be stochastic from the viewpoint of the other player, as

well as from that of its earlier (before-the-boycott) self. In addition, the regulator may at any time

impose regulation on the firm. Both self-regulation by F and regulation by R are irreversible actions

that end the game.3

Our dynamic framework has a number of attractive features. First, by allowing the three players

to act at any time, we can be agnostic about the exact sequence of moves. In finite multi-stage

games, the outcome is typically sensitive to the order of moves, as will be explained below. Second,

the difference between the regulator, who can use coercion, and the activist, who only can impose a

cost without ending the game, is meaningful in a dynamic model only. Third, real-life boycotts are

often quite long-lasting, so it is realistic to model them as wars of attritions. A dynamic model is

also necessary to make predictions regarding delays and durations of boycotts. Furthermore, while

self-regulation is always the first-best terminal outcome in our game, the possibility of delay shows

that private politics come at a real cost, rather than in the form of an off-path threat. Finally, the

model is rich enough to allow for a number of scenarios along the equilibrium paths. For example,

the firm may withstand the activists’ campaign, be forced to self-regulate, or end up regulated.

Self-regulation or regulation may happen before a boycott starts, during the boycott, or even after

the boycott ends. These possibilities are, of course, possible outcomes that can happen in reality.4

3This assumption is weak, since a reversal would never happen in equilibrium if there were a small positive cost
of returning to no regulation. For the firm, abandoning self-regulation after the boycott is called off is a possibility,
but then the activist would never stop the boycott, which eliminates the rationale to self-regulate in the first place.
To avoid this unnatural feature, we assume that self-regulation is irreversible. In practice, there may be technological
and/or institutional reasons that make reversals unlikely. E.g., a firm that invested in filters that reduce pollution
will likely find it impractical to uninstall them, given the small savings and large reputational risk, or a regulator may
come under scrutiny if it imposes and lifts requirements within a short timeframe. See also Besanko, Diermeier, and
Abito (2011) for a different model in which activists constantly trash the firm’s reputation in order to induce it to
keep investing in self-regulation.

4 In addition to the boycotts of Shell by Greenpeace and of Citigroup by RAN, which are examples of ultimately suc-
cessful boycotts (though the first was very short and the second very long), there are many cases of boycotts that failed
to result in self-regulation. Friedman (1985) noted that full-scale boycotts achieve success in only half of the cases. He
also observed that “simply announcing that a boycott was under consideration was associated with success or partial
success in about one third of the cases studied,” (p.109) so self-regulation may materialize even before the boycott
starts. In other cases, the outcome is public regulation. For example, a number of activist groups boycotted Nestlé over
its practice of marketing infant formula to mothers in the 1980s and 1990s. They formed coalitions such as INFACT
(Infant Formula Action Coalition) in the U.S. and Canada and IBFAN (International Baby Food Action Network) in
other countries such as Sweden, India, and New Zealand. Several years of boycotts did not lead to any credible volun-
tary action by Nestlé, but the boycotts led to governmental interventions in different countries at different times. In
India, for example, the government effectively banned Nestlé’s promotions of breast-milk substitutes and feeding bot-
tles in 2003 (see Saunders, 1996, and http://www.infactcanada.ca/The%20History%20of%20the%20Campaign.pdf).
In other cases, regulation has come before boycotts. For example, in 2010, McDonald’s Happy Meals were banned in
San Francisco by the city Board of Supervisors on the grounds that including a free toy with an unhealthy meal pro-
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Our analysis sheds light on the questions above. First, self-regulation may be more effi cient

than government regulation, but the firm takes advantage of this fact and will only self-regulate

after a substantial delay. Second, the possibility to self-regulate benefits the firm but harms the

activists if an active regulator is present; but the converse is true otherwise. Third, private politics

and government regulation are strategic substitutes and crowd each other out.

In addition to these results, the model makes a large number of testable predictions– for example,

regarding the duration of boycotts and their likelihood of success. Nevertheless, when we address the

fourth question on the difference between the US and Europe, we focus on two simple parameters:

the (expected) cost of running the boycott for the activist and for the firm. Section 4 argues

that because the US has a larger market and smaller trade barriers on its continent, the market

competition is stronger. This makes it more costly for a firm to be singled out in an campaign, and

it also reduces the boycotters’cost of finding a substitute good to purchase instead. As we argue,

these differences can explain the US-vs.-Europe puzzle.

The term “private politics” was coined by David Baron (2001; 2003) to describe nonmarket

interactions between individuals, NGOs, and companies, and the term has since been at the center

of a relatively small but growing literature. The puzzle of why firms self-regulate was addressed by

Baron (2001), who assumed that a company’s reputation positively affects demand for its product

and thus is worth investing in. A different theory is presented in Feddersen and Gilligan (2001), who

argue that self-regulation by one of the competing firms results in market segmentation that can

benefit all firms. When investments in Corporate Social Responsibility (CSR) improve the firm’s

reputation (stock), activists can increase the firm’s investment in CSR by occasionally destroying

its reputation when it becomes too good (Besanko, Diermeier and Abito, 2011).5

The activists play a more central role in Baron (2003) and Baron and Diermeier (2007), where

firms are faced with demands to adopt certain practices or else face a damaging campaign. The

analysis is extended by Baron (2009), which studies two competing firms and allows the activist to

be an (imperfect) agent of citizens.6

motes obesity in children. Attacking such practices by a large multinational corporation would be typical for activists,
but in this case, boycotts never materialized (see also http://abcnews.go.com/blogs/health/2011/11/30/mcdonalds-
skirts-ban-charges-10-cents-per-happy-meal-toy/).

5The idea that socially responsible actions of companies have a positive impact on their reputation and performance
has found empirical support. For example, Dean (2004) finds that a pre-existing reputation at the time of crisis affects
consumers’perception of a brand after the crisis, while Minor and Morgan (2011) document the fact that companies
with a good reputation take a lower hit on their stock price as a result of a crisis. Bartling, Weber, and Yao (2015)
use a series of laboratory experiments to study socially responsible behavior of firms in Switzerland and in China.

6Baron (2012) further develops this case by allowing for two activist groups, one more moderate and one more
aggressive. It then makes sense for each of the two competing firms to cooperate with the moderate group, as it
makes a boycott less likely. See also Baron (2010), which looks at cooperative arrangements in which various types of
activist groups can enforce cooperative behavior.

4



The boycott itself has attracted quite a bit of attention, since it is one of the most typical, and

certainly the most visible, implementations of private politics. Diermeier and Van Mieghem (2008)

model boycotts as a dynamic process, in which each of the (infinitesimal) consumers decides whether

to participate, depending on the number of other consumers boycotting the product. Delacote (2009)

observes that, when consumers are heterogeneous, boycotts are less effective since consumers who

buy a lot (and thus could hurt the firm most) are also the ones with the highest cost of boycotting.

Innes (2006) builds a theory of boycotts under symmetric information, suggesting that an activist

either targets a large firm with a short boycott that would show that the activist invested in

preparation, or targets a small firm, in which case the boycott is persistent since the firm finds it

too costly to satisfy the demands of the activist. In the latter case, the purpose of the boycott is

to redistribute customers to a larger, more responsible firm. Baron (2014b) specializes the model

to study multiple firms, multiple activists, and the matching between them. In contrast to the

literature above, we model the boycott as a war of attrition, and to the best of our knowledge we

are the first to do so.

Relatively few papers study self-regulation and/or activism in the shadow of the government.

For example, Maxwell, Lyon, and Hackett (2000) let firms lobby for regulation in order to effectively

restrict entry to the market in which they operate, and self-regulation allows the firm to stay in

business. In Baron (2014a), the government as well as activists has preferences over the degree of

the firm’s self-regulation. In equilibrium, the firm will satisfy the demands of the government up

to the point at which the government would reach gridlock if it attempted further regulation, but

it might also put in place additional self-regulation in order to prevent an activist campaign. In

Lyon and Salant (2013), activists target individual firms and force them to self-regulate in order to

change their behavior in a subsequent lobbying game. For instance, a firm that has been forced to

reduce its level of emissions will later prefer that other firms do the same; it thus supports rather

than opposes public regulation. In another recent paper, Daubanes and Rochet (2013) study an

environment in which regulators are perfectly informed about the social optimum but are captured

by the industry, while activists are poorly informed but committed to their cause. The authors

derive conditions under which the presence of activists improves social welfare. All these papers

either involve a static model or assume a particular sequence of moves, and thus do not incorporate

the dynamics of activists’campaigns or boycotts.7

7Our paper bridges the traditional literature on regulation and the more recent literature on private politics.
The literature on public regulation is huge, and the works most closely related to our paper are those that attempt
to compare different regulatory regimes. For example, Djankov et al. (2003) and Shleifer (2005) describe different
regulatory regimes as loci on an Institutional Possibility Frontier. When choosing the extent of the regulatory state, as
opposed to relying on market forces, the society trades off the costs of potential chaos (disorder) and of excess rigidity
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Finally, our paper makes a theoretical contribution to the literature on wars of attrition. Since

the two players, the firm and the activist, are fundamentally different, we cannot make the standard

assumption that the types are drawn from the exact same distribution. To the best of our knowledge,

the only paper permitting such heterogeneity is Ponsati and Sákovics (1995), where participants

are uncertain about each other’s benefits from winning. In our framework, their assumptions would

lead to the possibility of signaling before the boycott begins and during the boycott, unnecessarily

complicating the analysis. Thus, we assume instead that the players have private information about

their cost of continuing the boycott. These costs are boycott-specific, so a player learns the cost

only when the boycott starts. By assuming that types are distributed exponentially, we prove

existence and uniqueness of an equilibrium that takes a very tractable form: while each type of firm

and activist plays a pure strategy, for the other player, as well as outside observer, it appears as if

the player acts at a fixed Poisson rate. This feature simplifies the characterization of comparative

statics and payoffs. The tractability of our war-of-attrition model should make it useful for other

settings as well, e.g., in entry/exit models of markets or political campaigns, such as the primaries

in the US elections.

The next section describes a model with all three players: the firm, the activist, and the regulator.

Section 3 analyzes the different regulatory environments: (1) the firm and the regulator only, (2)

the firm and the activist only, and finally (3) the model with all three players in the same game.

The analysis ends with a discussion of the role of commitments, and shows why our model naturally

permits a unique equilibrium outcome. Section 4 explains how our theory can shed light on the

rise of private politics over time, and why self-regulation and activism are more common in the US,

while public regulation is more common in Europe. Section 5 concludes, while Appendix A contains

all proofs. Appendix B (to be available online) is technical and contains a complete analysis of the

war-of-attrition game.

2 The Model

The game allows for up to three players: the regulator R (she), the activist A (he), and the firm

F (it). Time is continuous and infinite, and we do not impose any assumption on the sequence of

moves. We proceed with introducing the (very simple) action sets of each of the players, one by

(dictatorship), and selects an effi cient alternative on the frontier (Mulligan and Shleifer, 2005). Glaeser, Johnson,
and Shleifer (2001) compare the effi ciency of public regulators and independent judges in enforcing contracts. Other
works have emphasized the problem of regulatory capture; see, for example, Laffont and Tirole (1991); Dal Bó (2006)
provides an overview of both the theoretical and the empirical literature. The interaction between the firm and
the regulator is very different in our paper (and more similar to the model of Harstad, 2016, studying rainforest
conservation).
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one. Flow payoffs in the status quo are normalized to zero, and r is the common discount rate.

The firm: At any point in time, F can end the game by self-regulating. For simplicity, we assume

that this decision is binary: either the firm self-regulates or not. This dichotomy is natural in many

situations, as when a firm must decide whether or not to use palm oil or child labor, or when Shell

had to decide whether or not to sink Brent Spar. For these types of self-regulations, it is also natural

to assume that the firm’s action is observable by everyone. In the concluding section, we discuss

how our results may continue to hold if self-regulation could be gradual.

The firm’s flow cost of self-regulation is c > 0, so that F realizes the present-discounted payoff− c
r

at the moment it decides to self-regulate. The other parties (A and R) benefit from F self-regulating:

the flow benefit equals b > 0 for A, while R gets flow surplus s > 0. We do not assume any relation

between these parameters, although the case where s = b − c could be a natural benchmark if the

regulator fully internalized the payoffs of F and A but nothing else.

The regulator: Just as F can self-regulate at any moment, regulator R can at any moment decide

whether or not to impose public regulation on F; we assume that this is also an irreversible decision

that ends the game. Importantly, we assume that regulation is more expensive than self-regulation

for both F and R. Specifically, the flow cost of F increases by k > 0 to c + k if it is regulated by

R, whereas for R the additional cost is q ∈ (0, s), so that her benefit from regulating F is s − q.

These assumptions are natural: R may need to monitor and frequently visit the firm, which involves

both direct costs and opportunity costs, as it takes valuable resources from regulating other firms

or industries. Similarly, the cost for F is likely to be higher because it must deal with red tape,

documentation, paperwork, or bureaucratic rules. Furthermore, R may be ‘clumsy’and unable to

regulate F in the most effi cient manner.8

The activist: Like the regulator, also the activist A is assumed to benefit from regulation. On

the one hand, one might argue that also A ought to prefer that F self-regulates, since that saves on

administrative costs. On the other hand, if F self-regulates, A may find it necessary to monitor the

firm regularly herself, suggesting that A may prefer public regulation. For simplicity, we assume

A’s flow benefit to be b, regardless of whether regulation is public or private.

The activist A can impose a cost on F to motivate F to self-regulate. However, in contrast to

R, A does not have the authority to impose regulation on F. Instead, A can try to pressure F to

self-regulate by initiating and continuing a boycott. Once a boycott has started, the boycott can

8 In industries where these assumptions are violated the equilibria are trivial. If R preferred to regulate, she would
regulate right away and the game would be over. If F preferred government regulation, then R would know that
F would never self-regulate, and would again have to regulate immediately. In either case the outcome would be a
publicly regulated industry.
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end in one of three possible ways: A can give up, F may self-regulate, or R might regulate; in the

two latter cases, we call the boycott successful.9

The boycott: We provide a novel formalization of the boycott as a war of attrition between A and

F. The boycott is costly for both A and F, and it is reasonable that the costs are increasing over time.

For the firm, a short-lasting boycott might merely imply delayed consumption by the same buyers,

whereas a longer boycott may prompt the buyers to permanently switch to a competitor.10 For

the activist, a longer boycott may be increasingly costly because of budget constraints, or because

maintaining the interest of potential buyers may require carrying out costlier and more newsworthy

activities. To capture this intuition, the marginal cost of a boycott after some time τ is assumed

to equal τ
θF
and τ

θA
for F and A, respectively. Here, θA and θF are the types of A and F, and the

type measures the player’s ability to deal with the boycott. In reality, it is diffi cult for A and F

to be certain about the other party’s ability to deal with the boycott, so we assume the types are

only privately known. Furthermore, since it is hard to predict in advance how costly (or effective) a

boycott is going to be, we assume that a player learns its type only when the boycott starts (Baron,

2012, is similarly assuming that the effect of the boycott is drawn only when it starts). At that time,

θi is independently drawn from an exponential distribution with expectation λi, so its probability

density function is fi (θi) = 1
λi

exp
(
− θi
λi

)
, for i ∈ {A,F}. With this notation, λi measures how cheap

the boycott is for i ∈ {A,F}.

When we discuss comparative static, we will emphasize the effects of the λi’s for two reasons.

First, the λi’s vary between the countries in natural ways: Section 4 documents that there is more

competition in the US than in Europe, which implies that it is more costly for a firm to be singled

out in a campaign, and that it is easier for activists to find substitute products. Thus, λA should

be larger and λF should be smaller in the US than in Europe. (We find it harder to argue that b

and c vary systematically between countries.) Second, the comparative static with respect to the

λi’s is likely to be more robust, because they capture distributions rather than exact values, and

are thus less sensitive to our assumption of common knowledge of other parameters.

Apart from the ongoing costs of boycott, it is realistic that the players also fear reputational

losses. For example, a firm that has been targeted in a boycott may never fully recover its reputation,

since some potential consumers may not pay attention when activists cease the boycott or the firm

gives in to their demands, or their trust to the firm may be permanently undermined in either case.

9 If actions by one or more participants are made at exactly the same time, then we assume that there is a lottery
that determines which of the actions ‘goes through’, and each of the actions has a positive chance to have the impact
(e.g., a fair lottery to save on notation). In equilibrium this will happen with probability zero.
10King and McDonnell (2012:22) find that “for every additional day of boycott media coverage the corporate target

experiences greater damage to the market value.”
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As a short-cut for such a reputational cost, we assume that F, as soon it is publicly accused of

wrongful activity (i.e., at the start of the boycott), pays the present-discounted cost of hr > 0 or,

equivalently, it is forever paying the flow cost h. Similarly, the activist may also fear reputation

losses: if the boycott is unsuccessful and A gives in, it will be less feared by firms, less trusted

by consumers, and perceived as ineffective by donors. As a short-cut for these costs, we assume

that when A calls off an unsuccessful boycott, he faces the present-discounted damage l
r > 0 or,

equivalently, the flow cost l.

For simplicity, we assume that R does not get any direct costs or benefits from the boycott, and

that R’s type is publicly known.11 The following table summarizes the flow payoffs:

Payoffs Status quo Self-regulation Regulation Boycott If started If called off
Activist 0 b b −τ/θA 0 −l
Firm 0 −c −c− k −τ/θF −h 0
Regulator 0 s s− q 0 0 0

Commitments: While we allow for reputational losses, we assume that none of the players can

commit to future actions. It is clearly reasonable that activists cannot pre-commit to boycott

forever; if they could, firm would give in immediately. Similarly, firms cannot credibly promise to

never give in to the activists’demands, for otherwise boycotts will never happen. Furthermore,

firms are unable to commit to self-regulate at a given future date, since, when that time arrives,

the firm would prefer to renege on the pledge. We treat the regulator in a similar way by assuming

she cannot pre-commit to future actions, for example, because future regulation may be influenced

by new politicians. Section 3 ends the analyses with a discussion of what the players would want

to commit to, if they could.

At the same time, as mentioned above, we assume that F’s and R’s actions, once taken, are

irreversible and therefore end the game. This assumption is weak, however, since neither F nor R

could strictly benefit from reversing their decisions, even if they could. Furthermore, the costs of

monitoring that the players stick to their commitments could be incorporated into the parameters;

we omit these to save on notation. We also maintain the assumption that once the boycott has

ended, it cannot be started again.12 Thus, we can refer to the following parts of the game as phases:

Phase 0 is the initial phase of the campaign where the boycott has not yet started; Phase 1 refers

to an ongoing boycott; Phase 2 begins if A gives up on the boycott.

The equilibrium concept: Since a part of the game (Phase 1) features asymmetric information,

11This is intuitive, since R may be thought of as a long-term player that regularly engages in similar problems, thus
it is natural to assume that R’s type is common knowledge. In any case, it will become clear that small departures
from these assumptions will not alter our results.
12Multiple boycotts are analyzed in our working paper version, Egorov and Harstad (2015).
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the natural equilibrium concept is Perfect Bayesian equilibrium (PBE). It turns out that there is

a unique PBE in Phase 1 in the game between F and A (a complete proof of this fact is given in

Appendix B). For the other phases or games, we need a refinement. We thus assume that every

player’s strategy is a function of only those aspects of the (private) history that is payoff relevant

to that player, as long as such a simple strategy is a best response to the strategies of the other

players.13 It follows that strategies must be stationary in Phase 0 and Phase 2 of the game, since

calendar time itself is not payoff relevant. This refinement is in line with Maskin and Tirole’s (2001)

idea of Markov perfectness (typically defined for games with complete information), which requires

strategies to be conditioned on payoff-relevant aspects of the history only.

3 Analysis

Before we analyze the game with all three players, we start by studying the interaction between only

two of them. The game between the firm and the activist is relevant when the public regulator can be

assumed to be rather passive, e.g., because she is convinced that not regulating is socially optimal,

while the game between the firm and the regulator is interesting in contexts where activist groups

are less effective, e.g., when the boycott is prohibitively costly or illegal. The insights generated

by these games are helpful to understand the full game. Furthermore, comparing the outcomes of

these games allows us to make conclusions about the importance of the regulatory regime.14

3.1 Public Regulation vs. Self-regulation

The game between the firm, F, and the regulator, R, is a simple stopping game: F can stop at

any time by self-regulating and guarantee the payoff − c
r to itself and

s
r to R, while R can regulate

the firm at any time, giving payoffs − c+k
r to F and s−q

r to herself. Note that both players would

prefer self-regulation to direct regulation when k and q are positive. Despite this alignment of

interest, there is no equilibrium where F self-regulates immediately: if F did so, R would simply

wait; but if R never imposed regulation, F would not self-regulate. Similarly, there is no equilibrium

13To be precise on what “payoff relevant”is, define the private history of player i ∈ {A,F,R} at time t (if the game
has not yet ended) as the actions played by any player or Nature and observed by player i by time t, as well as the
time when these actions took place. Thus, for R, the history is either empty, or it consists of the time ts the boycott
started, or ts as well as the time te the boycott was called off by A. For A and F, histories are similar, except that if
the boycott has started, the history includes the choice of A’s and F’s types, respectively, which is made by Nature
when the boycott starts. For player i, we call two histories hti and h̃

t̃
i of player i payoff equivalent if the continuation

payoffs of player i, computed from moment t for hti and from moment t̃ for h̃t̃i, are the same for any combination of
future actions by A, F, R, or Nature, such that for any action at time t + τ after hti there is an identical action at
time t̃ + τ after h̃t̃i, and vice versa, for every τ ≥ 0. We restrict attention to PBEs for which the strategy for each
player i ∈ {A,F,R} is the same for any pair of payoff-equivalent histories.
14The game between the activist and the regulator only would be trivial, since the regulator would regulate imme-

diately if the firm existed but could not self-regulate.
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where R regulates immediately, as then F would self-regulate immediately, but then, again, R would

prefer not to regulate. Thus, there is no equilibrium in pure strategies. However, there is a unique

equilibrium in mixed strategies (where the players mix between times to act).

Since time is continuous, the stationary mixed-strategy equilibrium is characterized by two

Poisson rates: For the firm, the Poisson rate φ ≥ 0 specifies the probability that F acts over the

next marginal unit of time; for the regulator, the Poisson rate is γ ≥ 0. For F, it is a best response

to self-regulate if and only if γ is large. For R, it is a best response to regulate if and only if φ

is small. The best-response curves cross exactly once, and this pins down the equilibrium rates.

More precisely, there is a unique equilibrium, and in that equilibrium both F and R are indifferent

between acting and waiting.

Proposition 1 In the game between F and R, there is a unique equilibrium and it is in mixed

strategies. The regulator introduces regulation at a larger Poisson rate if c is large and k is small,

while F self-regulates at a larger Poisson rate if s is large while q is small:

φ = r
s− q
q
∈ (0,∞) ,

γ = r
c

k
∈ (0,∞) .

The comparative statics are intuitive. If self-regulation is costly for F, while public regulation is

not much more costly, then F is relatively reluctant to self-regulate and R needs to step in sooner.

If R faces a low cost and a large surplus when regulating F, then R is eager to act and F must in

equilibrium self-regulate at a higher rate.

It is straightforward to derive additional comparative static on the probability of the various

outcomes. The probability that eventual regulation is public is γ
φ+γ = 1

1+ k
c
s−q
q

, which is increasing

in q and c but decreasing in k and s. The expected delay before regulation or self-regulation equals
1

φ+γ = 1
r

1
c
k

+ s−q
q

, which is increasing in q and k but decreasing in s and c. Naturally, the less is at

stake, the slower the players will act.

The payoffs for the players are the following. Since acting and thereby ending the game is a best

response to both players, the firm’s payoff is v = − c
r , and the regulator’s payoff is w = s−q

r . For

a passive activist benefitting b from any type of regulation, the expected utility is u = φ+γ
φ+γ+r

b
r =

s−q
q

+ c
k

s−q
q

+ c
k

+1
b
r .

The benefits of private politics are the following. If the firm were unable to self-regulate, perhaps

because such an action could not be monitored or verified, public regulation would be imposed

immediately. Thus, the possibility to self-regulate leads to a more effi cient outcome, since the firm

11



may self-regulate at a lower cost, but the cost is that the regulatory outcome is delayed. Moreover,

the firm captures the entire benefit of the possibility to self-regulate, since its expected cost decreases

from c+ k to c. The regulator is indifferent and receives the payoff s− q whether or not F can self-

regulate. A passive activist benefitting b from any type of regulation is therefore directly harmed

by the firm’s ability to self-regulate, since regulation is then delayed.

3.2 Private Politics

This subsection analyzes the two-player game between the firm, F, and the activist, A. Under the

assumption that A can boycott only once, the game can be solved by backwards induction. Consider

Phase 2, the subgame after the boycott has ended. In this phase, only F is capable of taking an

action. Since self-regulation is costly, F prefers to stick to the status-quo and not self-regulate:

φ2 = 0,

where the subscript refers to Phase 2. In other words, both players expect to receive a payoff of

zero when entering Phase 2 (so u2 = v2 = 0). This outcome is anticipated during the boycott.

In Phase 1, the two players play a war of attrition: they face an ongoing cost of boycott which

is private information, and each player wants the other to give in first. The moment F gives in, it

receives a payoff equal to − c
r , while A gets

b
r . If A gives in instead, then F gets away with 0, while

A receives a payoff equal to − l
r .

As long as none of the players have ended the boycott, each player will over time become more

pessimistic about the opponent’s cost of boycott. Furthermore, the cost of the boycott increases

over time. Thus, for any type θi of player i ∈ {A,F}, there is an optimal stopping time at which this

particular type prefers to give in. In other words, each type plays a pure strategy and is determined

to give in at this exact time, unless the opponent has already ended the game.

Since each player’s type is private information, the stopping time looks uncertain and randomly

distributed from the opponent’s point of view. In fact, in the model we have specified above, it

turns out that in the unique equilibrium, each player will end the game at a Poisson rate that is

constant and independent of how long the boycott has lasted. The Poisson rate for the firm in

Phase 1 will be referred to as φ1, while the Poisson rate for the activist is named ρ. The fact that

the equilibrium rates happen to be constant simplifies the analysis as well as the comparisons to

the other phases and alternative regulatory environments.

Proposition 2 In the game where A boycotts F, there is a unique equilibrium, and it is in pure

strategies.
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(i) Both F and A play ‘linear’strategies: F of type θF gives in after time τ = 1
φ1λF

θF from the

start of the boycott and A of type θA gives in after time τ = 1
ρλA

θA, where φ1 > 0 and ρ > 0 are the

unique positive solutions to the pair of equations: φ1 = 1
cλF (1+ ρ

r )
;

ρ = 1
λA(l+φ1 b+lr )

.

Consequently, for an outside observer, the times of concessions for F and A are distributed expo-

nentially with expectations 1
φ1
and 1

ρ , respectively, and F and A concede at Poisson rates φ1 and ρ,

respectively.

(ii) If λF decreases, or λA increases, F self-regulates faster (φ1 increases) and A ends the boycott

at a slower rate (ρ decreases), so the boycott is more likely to succeed. This makes F worse off (v1

decreases) and A better off (u1 increases).

When the players take the equilibrium (φ1, ρ) as given, a firm of type θF gives in by self-

regulating exactly at time τ = 1
φ1λF

θF , linearly increasing in its ability to deal with the boycott, as

measured by its type, θF . The activist’s time of ending the boycott is similarly increasing in θA. The

equilibrium is the unique positive solution to the two best-response functions. With the exponential

distributions, each player’s choice of time becomes uncertain (given that its type is unknown to the

other player), and the Poisson rate at which each player acts happens to be constant.15

The comparative static is natural. Although the players’actual costs of the boycott are private

information, parameters λi that measure the expected costs are publicly known, for i ∈ {A,F}. If

λF decreases, and the boycott becomes more expensive for F, then F self-regulates at a faster rate.

This, in turn, encourages A to wait and A thus concedes at a lower rate. As a result, the boycott

is unambiguously more likely to be successful. Furthermore, F is worse off both because of a higher

cost of boycott, and also because A gives in later. For similar reasons, A becomes better off. An

increase in λA has the same effects for similar reasons: When A finds the boycott inexpensive, he

gives in later, and F gives in sooner as a response. This therefore benefits A and harms F. One can

easily derive comparative statics results with respect to other parameters,16 or with respect to the

15The proof that both A and F must play such strategies is much more complex, and is presented in full in Appendix
B.
16For example, a higher c makes F less willing to concede, which in turn forces A to give up at a higher rate.

Because of this, a higher c makes a boycott less likely to be successful; moreover, it makes A unambiguously worse
off, whereas the direct negative effect on F is partly offset by the lower willingness of A to sustain a boycott. For
similar reasons, a higher l makes A more committed to continuing the boycott, and thus boycotts are more likely to
be successful which makes F is worse off, however, the effect on A is ambiguous, because its direct negative effect is
offset by a less resolute F. A higher b leads to more successful boycotts, and makes A better off and F worse off.
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duration of the boycott.17

In Phase 0, before the boycott has started, the players anticipate the equilibrium play in Phase

1. The players take their expected payoffs for Phase 1 (u1 and v1), and there is no asymmetric

information, since the cost of the boycott is not known before it starts.

Just like in the game between F and R only, the stationary equilibrium for Phase 0 is unlikely

to be in pure strategies: If F were to self-regulate immediately, A would never start the boycott,

but then F would not self-regulate, contradicting the assertion. If we instead asserted that F would

never self-regulate, then A would find it necessary to start a boycott to get u1 rather than nothing,

as long as u1 > 0. However, if a boycott were eminent, F would prefer to act, provided that its

payoff from boycott is suffi ciently low, i.e., v1 − h
r < − c

r . In what follows, we assume that this

inequality holds, to simplify exposition and limit attention to the most interesting and reasonable

cases.18 Thus, if u1 > 0, the equilibrium must be in mixed strategies.

The equilibrium rates, φ0 and α, are defined by two indifference conditions. The activist is

indifferent between starting and not starting a boycott if and only if u1 = φ0
φ0+r

b
r , while the firm

is indifferent between self-regulate and not if and only if − c
r = α

α+r

(
v1 − h

r

)
. This gives us the

following result for all generic cases.19

Proposition 3 There is a unique equilibrium in the pre-boycott game between A and F.

(i) If u1 > 0, the equilibrium is in mixed strategies and given by the Poisson rates:{
φ0 = r2 u1

b−ru1 ;
α = c

−(v1−hr )− cr
.

If λF decreases, or λA increases, the firm self-regulates at a faster rate and the boycott starts at

a slower rate.

(ii) If u1 < 0, then φ0 = α = 0.

17Reducing the costs of the boycott by increasing either λF or λA leads to longer boycott, provided that boycotts
are not too expensive (i.e., if λA > b+l

l2r
and λF > 1

rc
). The possible ambiguity in the effect of λF or λA is interesting.

For example, an increase in λF may be thought of as having two effects on delay. The direct effect makes the boycott
cheaper for F, thus making it less willing to give in and thereby prolonging the boycott. On the other hand, this
makes A more willing to give in (the indirect effect), and this makes the boycott shorter. On balance, the direct effect
tends to dominate, except for the case where F is highly unlikely to give in, so the duration of the boycott mainly
depends on A.
18 If this condition does not hold, even an eminent boycott would not make the firm self-regulate beforehand, because

it values the delay that the boycott creates. The equilibrium would then require φ0 = 0, while α = ∞ if u1 > 0 and
α = 0 otherwise. Note that the condition v1 − h/r < −c/r is automatically satisfied if h ≥ c, i.e., if the firm values
reputation a lot and self-regulation is not too costly (note that v1 is always negative); this is arguably the most
interesting case if we are to study firms vulnerable to private politics.
19For simplicity, we ignore the nongeneric (borderline) cases, since they follow straightforwardly and intuitively

from the propositions. For example, if u1 = 0, then (φ0, α) characterizes an equilibrium if and only if both φ0 = 0

and α ∈
[
0, c
−(v1−h/r)−c/r

]
.
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The comparative static is interesting. A larger λA or a lower λF increases u1, which makes it

more likely that the equilibrium is of type (i). As u1 > 0 increases further, A becomes more tempted

to start the boycott, so the firm becomes more likely to self-regulate. Thus, φ0 must increase if λA

becomes larger or λF becomes smaller.20

The payoffs for Phase 0 will be a function of the payoffs for Phase 1, described by Proposition

2(ii). If u1 < 0, A prefers to not start the costly boycott, so both players get zero. If u1 > 0, A is

just willing to start the boycott, so u0 = u1, while F is indifferent between self-regulating and not,

so v0 = − c
r . If λF decreases or λA decreases, A benefits more from the boycott (u1 increases) and

becomes more tempted to initiate it. As a response, the firm will be more likely to self-regulate, and

A’s expected payoff increases in Phase 0 as well. The same changes in parameters can make the

firm worse off, but only at the point where u1 switches sign from negative to positive, since then

the firm will find it necessary to self-regulate at some rate.

The benefits of private politics are the following. If the firm could not self-regulate, perhaps

because such an action could not be monitored or verified, nothing would happen. The same would

hold if activism were impossible. Thus, the activist benefits from the fact that private politics is

possible (its payoff ismax (u1, 0) ≥ 0), while the firm is harmed by this possibility. On the aggregate,

the possibility of private politics leads to a more effi cient outcome if b > c, but only after a delay

and potentially after a costly boycott. Self-regulation is entirely driven by the possibility to boycott,

while the activist is motivated by the firm’s possibility to self-regulate. In this sense, self-regulation

and activism are strategic complements.

As a final remark, note that there is a strong similarity between the situation in Phase 0 and the

situation with only F and R, analyzed in Section 3.1. In both situations, F prefers the status quo,

but F as well as F’s opponent prefer that F acts before the other does. In fact, the two subgames are

equivalent, except that the exact payoffs at the terminal nodes may differ. Therefore, if it turned

out that s = b and s − q = u1, the firm would have to self-regulate with the same probability in

the equilibria of the two subgames. If c − k happened to equal v1, we would have α = γ. Thus,

the qualitative difference between the two games is that when R acts, the game ends, while when

A acts, we continue to Phase 1.

20 In addition, note that a larger λA or a lower λF leads to a smaller v1, which reduces α. The intuition is that if the
firm fears the boycott because it is costly for the firm, but not for the activist, then the firm is willing to self-regulate
in Phase 0 even when the likelihood for a boycott is small.
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3.3 Public Regulation Meets Private Politics

Here, we finally consider the situation where A, F, and R are all present. The previous subsections

are helpful as stepping stones: In Phase 2, once the boycott has ended, A is no longer capable of

taking any action. The game is then between F and R only, and the outcome is exactly as described

by Proposition 1. Thus, in Phase 2, there is a unique stationary equilibrium characterized by

φ∗2 = r
s− q
q

and γ∗2 = r
c

k
,

where the asterisk in superscript is used throughout to refer to the game with all three players. The

payoffs in Phase 2 are as described in Section 3.1: R gets w∗2 = w = s−q
r , F gets v

∗
2 = v = − c

r ,

and A gets u∗2 = u =
s−q
q

+ c
k

s−q
q

+ c
k

+1
b
r . This outcome is anticipated during the boycott, where, if A gives

in, he receives a payoff equal to u∗2 − l
r , while F gets −

c
r , since self-regulation is a best response in

Phase 2 for F. If F gives in during the boycott, F receives the payoff − c
r , while A gets

b
r . To stay

focused on the interesting case, we henceforth assume that u∗2 <
l
r .
21

Going back to Phase 1, we notice that there are two different scenarios. In one scenario, the

boycott itself motivates F to regulate early, so that φ∗1 > φ∗2 even without R intervening; in this

case, R indeed prefers to wait and remain passive. In this situation, F self-regulates because the

boycott becomes increasingly costly and because F is learning over time that A finds the boycott

inexpensive. Naturally, this situation is reasonable if F’s expected cost is large, i.e., if λF is smaller

than some threshold, λF . The smaller is λF < λF , the faster the firm self-regulates even if R stays

passive during boycotts. It is then beneficial for A to wait longer before ending the boycott, so

ρ∗ is lower. Similarly, if λA increases, A finds the boycott less expensive, he gives in later, and ρ∗

declines.22 Note the similarity between this situation and the boycott when R were not present, as

described by Proposition 3.

The other scenario bears similarity to Proposition 1, and it arises when and λF is so large

(namely, λF > λF ) that the F’s cost of the boycott is suffi ciently small, and the boycott on its own

can only motivate F to self-regulate at rate φ∗1 < φ∗2. This rate is insuffi cient to make R stay passive

and wait, and R would instead prefere to regulate. Therefore, for λF > λF , R must intervene in

equilibrium. At the same time, R cannot act with a very large probability, since then F’s best

response would be to self-regulate immediately, and that would have induced R to wait. Thus, just

like in the game between F and R only, R must play a mixed strategy by imposing regulation at
21The main insights continue to hold if u∗2 >

l
r
, but then there exist parameter values at which A would give in

immediately, because his payoff from the post-boycott game is high enough. Notice that the assumption u∗2 <
l
r

means that the reputational loss of A if it gives in is nontrivial.
22However, F does not respond to the decline ρ∗, because at the exact time when F gives in, F is indifferent between

whether or not to end, so the rate ρ∗ does not influence F’s decision.
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some Poisson rate, and the higher this rate is, the more F is willing to self-regulate. Furthermore,

R is willing to randomize only if φ∗1 = φ∗2. Thus, if λF increases, R must act at a higher rate to

motivate F to self-regulate suffi ciently soon. Since R acts at a larger rate when λF > λF increases,

while F continues to self-regulate at the constant rate φ∗1 = φ∗2, A benefits more from continuing the

campaign, and ρ∗ must decrease. In other words, u∗1 is U-shaped while ρ
∗ is hump-shaped in λF , so

the effect of a larger λF on A’s strategy and payoff is reversed when R becomes active in Phase 1.

Proposition 4 There is a unique equilibrium in the boycott game with all three players.

(i) If λF < λF ≡ q
cr(s−q) , then

φ1 =
1

cλF
> φ∗2,

ρ∗ =
1

λA

(
b+l−ru∗2
rcλF

+ l − ru∗2
) , and

γ∗1 = 0.

A smaller λF increases φ∗1 and decreases ρ
∗, making the boycott more likely to succeed. A larger λA

reduces ρ∗ and makes the boycott more likely to succeed.

(ii) If λF > λF , then

φ∗1 = φ∗2 =
r (s− q)

q
,

ρ∗ =
1

λA

((
s−q
q + c

k −
q

rk(s−q)λF

)
(b+ l − ru∗2) + l − u∗2

) , and
γ∗1 =

r

k

(
c− q

r (s− q)λF

)
.

A smaller λF decreases γ∗1 and increases ρ
∗, making the boycotts less likely to succeed. A larger λA

preserves γ∗1 and φ
∗
1, but decreases ρ

∗, making boycotts more likely to succeed.

(iii) If λA increases, then both A’s expected payoff u∗1 and F’s expected payoff v∗1 increase. A

smaller λF makes A better off (u∗1 increases) if λF < λF , but worse off if λF > λF . Furthermore,

there exists a threshold λ̂F < λF , decreasing in λA, such that u∗1 ≥ u∗2 if and only if λF ≤ λ̂F .

The comparative static of λF and λA is discussed earlier. Figure 1 depicts the three equilibrium

rates as a function of λF , and A’s expected payoff u∗1 is also illustrated, following part (iii) of the

proposition. Since the proposition states explicit equations for all equilibrium rates, it is easy for

the interested reader to derive testable empirical predictions also of the other parameters of the
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Figure 1: The firms’expected ability to deal with the boycott is important for the equilibrium Poisson
rates.

model, and also for other aspects of the equilibrium, such as for the likely outcome or the expected

boycott duration.23

In Phase 0, the players anticipate the effects of starting a boycott, as described in Proposition

4. Similarly to Phase 1, the equilibrium in Phase 0 may be with or without R as an active player.

In particular, if the mere threat of the boycott is suffi cient to motivate the firm to self-regulate at

a fast rate, the regulator strictly prefers to wait. In this case, the equilibrium is just as described

by Proposition 2 (except that F’s and A’s continuation payoffs are u∗1 and v
∗
1 instead of u1 and v1).

Since u∗1 is at the largest when λF ≤ λ̂F is very small, this type of equilibrium is likely to exist

when λF is small, i.e., when the boycott is expected to be costly to the firm.

However, if λF ≤ λ̂F increases, u∗1 decreases and F can reduce φ
∗
0 while still ensuring that A is

willing to wait with the boycott. For a suffi ciently small u∗1, referred to as some threshold u ∈ [0, u∗2),

φ∗0 is reduced to the point where the regulator is not willing to wait. At that point, R must regulate

at a positive Poisson rate for F to be willing to self-regulate so fast that R is willing to wait. Thus,

for u∗1 < u, the likelihood of regulation increases to the poing where A strictly prefers to abstain

from initiating a boycott, Thus, for u∗1 < u, the unique equilibrium is such that only F and R

actively participate, just as described in Section 3.1.

The equilibrium with only F and R playing the game exists even when u∗1 is larger than u.

23For example, a larger c (a higher cost of self-regulation for F) reduces φ∗1 for λF < λF and increases γ∗1 for
λF > λF , thus making the boycott longer and less effective in the former case and shorter and more effective in the
latter case (λF is reduced as well). This again highlights that the consequences of changes in parameters critically
depends on whether R is present and active. On the other hand, an increase in b decreases ρ∗, thereby making boycotts
longer and more effective in both cases. A larger λA reduces ρ∗, so the boycott lasts longer and succeeds with a larger
probability. A larger l has the same effect, while a smaller λF ≤ λF makes the boycott more likely to succeed.
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Indeed, A gets u∗2 > u when A stays passive while only R and F play, so A strictly prefers to enter

the game (by initiating a boycott) only when u∗1 > u∗2. Thus, for u
∗
1 ∈ [u, u∗2], both equilibria exist.24

Proposition 5 There exists a threshold u ∈ [0, u∗2) such that:

(i) If u∗1 > u∗2, there is a unique equilibrium, given by

φ∗0 = r
u∗1

b/r − u∗1
> φ∗2, α

∗ =
c

h
r + (−v∗1)− c

r

, and γ∗0 = 0;

(ii) If u∗1 < u, the unique equilibrium is:

φ∗0 = φ∗2, α
∗ = 0, and γ∗0 = γ∗2.

(iii) If u∗1 ∈ [u, u∗2], both equilibria (i) and (ii) exist. In this case, A prefers the equilibrium of

type (i) whereas R prefers the equilibrium of type (ii).

In case (iii), when u∗1 ∈ [u, u∗2], there also exist equilibria in which both A and R are active

(α∗ > 0 and γ∗0 > 0), but these equilibria are unstable.25 In any case, when u∗1 < u∗2, A would

prefer to not enter the game in the first place, and leave the floor for R and F, thereby securing

u∗2 > u∗1. Thus, if A were able to choose whether to enter the game or not, then there will be a

unique equilibrium played in case (iii) as well– which would coincide with the equilibrium in case

(ii). Section 3.4 discusses this situation further.

The comparative static is as expected. Since Proposition 4 states that u∗1 ≥ u∗2 if and only if

λF ≤ λ̂F , the equilibrium of type (i) in Proposition 5 arises only when λF < λ̂F . When this condition

holds, a smaller λF increases u∗1 and thus increases φ
∗
0; a larger λA will have the similar effect. In

addition, and just as before, the above equations imply that a rich set of testable predictions can

be derived by the interested reader.

The payoffs for the players are the following. For the equilibrium of type (i), both F and A

are just willing to act, so F receives −c/r while A receives u∗1. Since R strictly prefers to remain

passive, w∗0 > w∗2. For the equilibrium of type (ii), both F and R are willing to act, so F receives

− c
r while R receives

s−q
r , and as explained earlier, A receives u

∗
2 > u∗1. This explains why both R

24As in the previous subsection, we assume that the firm is harmed from the boycott and would prefer to self-
regulate rather than risking an immediate boycott with probability one. This implies h

r
− v∗1 > c

r
, which is satisfied

if h > c, similarly to Subsection 3.1.
25When u∗1 ∈ [u, u∗2], there is an equilibrium with α∗ > 0 and γ∗0 > 0, whereas φ

∗
0 may be zero or positive. However,

such equilibrium will be unstable in the following sense. Since either all players or at least A and R randomize, they
are indifferent between acting and not. If one strategy is slightly perturbed, the best responses of the other players
will ensure that we end up with either R or A being passive. To see this, suppose γ∗0 increases (decreases) slightly from
the equilibrium rate. Then A strictly prefers not to start a boycott (to start immediately). This change reinforces
R’s motivation to raise (reduce) γ∗0, making the initial equilibrium locally unstable.
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and A prefer the equilibrium where the other player is active whenever both equilibria exist. Both

A and R can impose a cost on F and induce it to self-regulate, but if one of A and R becomes more

active, the other prefers to remain passive. In other words, public regulation and private politics,

in the form of activism, are strategic substitutes.

The benefits of private politics are therefore different from the situation without R in the game.

The possibility to self-regulate is now beneficial for the firm but harmful for the activist, since the

regulator would impose regulation immediately if F could not self-regulate.26

3.4 Commitments, Participation, and Uniqueness

Equilibria in dynamic games are often required to be subgame perfect in order to rule out non-

credible strategies. In our setting, it is reasonable to assume that players cannot commit to future

strategies. This desirable modelling feature is one motivation for why we chose a dynamic model in

the first place.

Nevertheless, there are two reasons to return to the assumption on commitment in this subsec-

tion. First, by discussing the equilibrium if a player could hypothetically commit, we deepen our

understanding of the ineffi ciencies discussed above. Second, the entry of the activists in the game

should ideally be endogenous (unlike the regulator, who is best thought of as a long-term player).

If the activist can decide whether to enter, we show below that the equilibrium outcome is unique.

This uniqueness allows us to make sharp and testable empirical predictions, which we can use when

comparing the US and Europe in the next section.

Consider the boycott game between A and F first. If a single player could commit during the

boycott, that player would commit to never act, since the best response of the opponent would then

be to give in immediately. The situation is completely different in Phase 0, before the boycott, and

also in the game between F and R only. In both situations, F would like to promise to self-regulate

at some future time. The firm generally prefers to delay the time of self-regulation, but its promise

will only defer the other player from acting if the time is suffi ciently close.27 If instead F’s opponent

could commit, the opponent would commit to act soon, so that the firm would find it optimal to

self-regulate even sooner. Any of these commitments would generate a Pareto improvement for the

26The possibility to boycott is irrelevant for the firm as long as the regulator is present, but the regulator may
strictly benefit from activism, since then equilibrium (i) may be played instead of equilibrium (ii) in Proposition 5.
27The firm would like to promise self-regulation at some future date t, hoping that this will discourage A from

initiating a boycott, or R from imposing public regulation. However, in the game between F and R, R is willing to
wait only if se−rt ≥ s − q, which implies t ≤ − ln (1− s/q) /r, so F’s optimal promise would be to self-regulate at
t = − ln (1− s/q) /r. In the game between F and A, A is willing to wait if and only if be−rt ≥ u∗1, so t ≤ − ln (u∗1/b) /r,
implying that F’s optimal promise would be to self-regulate at t = − ln (u∗1/b) /r. However, when these dates arrive,
F would prefer to postpone self-regulation if it could.
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two players, and the final outcome would be effi cient (i.e., self-regulation).

The most interesting situation arises when all three players may be active, i.e., when both

equilibria (i) and (ii) in Proposition 5 exist. In this case, A and R can be interpreted as two

different principals who both would like to regulate the agent (i.e., the firm). Acting is costly,

however, so each of A and R would prefer to commit to stay passive, since then the other player

would pay the cost instead.

It seems unrealistic for the regulator to commit to be passive, given the number of regulatory

tasks it has to deal with.28 Activists, however, are making deliberate choices on whether to get

organized or to reveal themselves to the firm and the regulator; even famous activists like Greenpeace

have limited resources and may credibly signal to be busy with something else. Thus, we find it

realistic to extend our framework by allowing A to decide whether to enter the game or not at the

beginning.

In the game between A and F only, A is at least weakly better off by entering the game (strictly

if u1 > 0), since A captures the entire benefit of private politics when R is absent. With R present

in the game, the activist receives the payoff u∗2 when leaving the scene to F and R. Anticipating

this, A only wants to enter if u∗1 > u∗2, which is true if and only if λF < λ̂F , leading to equilibrium

(i) in Proposition 5. Thus, whenever both equilibria exist, as in part (iii) of the proposition, A will

not enter. This natural refinement leads to a unique equilibrium outcome in Phase 0 as well. Based

on this refinement, we can summarize some of our most important results in the following way:

Corollary 1 Suppose A can decide whether to enter the game at the beginning.

(i) A enters only when λF < λ̂F . In this case, F self-regulates at a fast rate (φ∗1 > φ∗0 ≥ φ∗2+γ∗2 >

φ∗2) while R stays passive until the boycott fails (γ
∗
0 = γ∗1 = 0 < γ∗2). A decrease in λF or an increase

in λA makes F self-regulate sooner (φ∗1 and φ
∗
0 increase), and leads to a decrease in ρ

∗, thus making

a boycott more likely to succeed. Furthermore, an increase in λA increases α∗, thus making the

boycott more likely to begin with.

(ii) If λF > λ̂F , A does not enter and the equilibrium is as in Proposition 1.

(iii) Since λ̂F increases in λA, there exists a threshold λ̂A (λF ) such that A enters and the

equilibrium is as described by Proposition 5(i) if and only if λA > λ̂A (λF ).

As stated by the last part of the corollary, the comparative static can be expressed in terms of

λA instead of λF : fixing λF , the equilibrium is more likely to be of type (i) if λA is large.
28 In developing countries, however, the state capacities of governments are built gradually. In that context, inter-

estingly, the government may benefit from not building its state capacity if there exist NGOs (perhaps international)
that otherwise will provide public goods and pressure firms to self-regulate.
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4 Application: Europe vs. the United States

Our theoretical framework provides a large number of empirically testable predictions. These pre-

dictions are important and of political relevance for how to understand governmental regulation as

well as private politics. Thus, the results deserve a thorough and serious empirical investigation.

Such an investigation requires the collection of new data sets that must be analyzed in detail.

Undertaking a serious test is certainly beyond the scope of this paper. However, to get some

idea of what empirical regularities the theory may shed light on, we will here discuss a number of

differences between the US and Europe and how our theory can explain the puzzles.

Let us start with the two stable equilibria in Phase 0, Section 3.3. In equilibrium (i) of Proposi-

tion 5, the activist was likely to initiate campaigns while the regulator was passive; in equilibrium

(ii), the activist was passive but the regulator active. The activist’s and the regulator’s actions are

strategic substitutes, and the presence of an active regulator, for example, discourages the activist

from initiating costly campaigns. The two equilibria may coexist even if we fix a set of parameters.

When they do, the likelihood of self-regulation has to be higher in equilibrium (i), where the activist

is active, than in the equilibrium (ii), in which the regulator is active (otherwise the regulator would

not be willing to remain passive in equilibrium (i)).

These characteristics describing regulatory environments fit well when we contrast the US vs.

Europe: The US is more similar to equilibrium (i) on all of the following three dimensions than are

most of the countries in Europe, as we will now argue.

Regulation: Matten and Moon (2008:5) write that “The key distinguishing feature of American

and European political systems is the power of the state. This has tended to be greater in Europe

than in the USA.”Such characterizations are common in the literature.29 The set of offi cial and

public regulations is clearly more elaborate in Europe, for example when it comes to the labor

market, carbon dioxide emission standards, or GMO.30

Self-regulation: US companies more frequently participate in voluntary codes of conducts than

their European counterparts, and they spend more than ten times as much as UK companies on

“corporate community contributions.”31

29Similarly, Vogel (2003:3) states that “EU regulations are more stringent, innovative and comprehensive than those
adopted by the US.”Matten and Moon (2008:5) also suggest that “European governments have been generally more
engaged in economic and social activity”than that in the US.
30Davison (2010:94) compares regulation of GMOs (genetically modified organisms) between the US and Europe

and notes that “the EU has the probably strictest regulations in the world for the presence of GMOs in food and
feed”, and: “in contrast to the EU, the USA has no GMO thresholds or obligatory GMO labeling”(p. 96). Löfstedt
and Vogel (2001) present several other examples were US have taken less action with respect to potential regulation
issues, e.g., plasticizers in toys and mobile phones for children. See also Belot (2007) on labor market regulations or
Lynch and Vogel (2000) for more on GMO.
31Matten and Moon (2008:1) summarize the literature and find that voluntary codes of conducts is more common
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Figure 2: Share of consumers that have already boycotted (The World Values Survey as illustrated
in Hoffmann, 2014).

Boycotts are described as an “American political tradition”and “American custom”by Glickman

(2009), who provides a detailed historical overview of how boycotts have developed over time in the

US. The World Values Survey provides more precise data on the fractions of consumers that have

participated in boycotts. This fraction is larger in the US than in European countries (except for

Sweden), according to the tables of Hoffmann (2014:149); see Figure 2 for a subset of the countries.

These large differences between the US and Europe over the several dimensions may appear

puzzling, particularly because it is hard to point to a few fundamental aspects that may drive all

the differences. Nevertheless, the differences can be rationalized by the theoretical predictions of our

model described above. Whether we look at public regulation, activism or self-regulation by firms,

the US environment is consistent with equilibrium (i) in Proposition 5, Section 3.3, while Europe

is consistent with equilibrium (ii). The substitutability between activism and public regulation has

also be recognized by observers: “In response to particular stakeholder pressure [US companies]

assumed the explicit responsibility which most of their European counterparts left to regulators.”32

Most importantly, our theory can also shed light on why the US and Europe may have ended

up with different regulatory environments. Even though Europe is now a single market, thanks to

the development of the European Union, trade on the continent has historically been hindered by

in the US than in Europe, and that “while 53% of US companies mention CSR explicitly on their websites only 29%
of French and 25% of Dutch companies do the same.”Kolk (2005) identifies a total of 15 corporate codes globally,
of which only two were European (both by the same company Nestlé) while the remaining 13 codes were issued and
adopted by exclusively US-American corporations. Bennett (1998) documents that corporate donations are smaller
in Europe compared to the US.
32Matten and Moon (2008:13). The full quote is: “The US Food and Drug Administration and the Department

of Agriculture operate a ‘laisser-faire’ approach releasing 58 GMOs until 2002 in which time the EU Commission
legalized just 18... However, in response to substantial consumer activism some major US food companies (e.g.
McDonalds, Gerber, McCain) publicly renounced ingredients made from genetically altered seeds. In response to
particular stakeholder pressure they assumed the explicit responsibility which most of their European counterparts
left to regulators.”
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borders and barriers to a much larger extent than the market in the US. The larger market in the

US implied that local monopolists had a smaller chance to abuse market power, and competition

was thus fiercer.33 As a result, competition tends to be larger in the US than in most European

countries. The Global Competitiveness Index (2016-17) ranks the US third in the world, only beaten

by Switzerland and Singapore. All other European countries lag behind. Furthermore, the World

Economic Forum ranks the US sixth in “intensity of local competition,”and only the UK and Malta

are ranked about the US in Europe.

When competition is tough, the cost of being singled out in an activist campaign is larger, and

the cost of running the boycott is smaller (Garrett, 1987; Smith, 1990). Thus, it is reasonable that

the firms’expected cost of boycotts is higher in the USA (implying a smaller λF ). In addition, since

competition is tougher and close substitutes are readily available, the activists’cost of running the

boycott is probably smaller in the US (implying a larger λA).

The consequence of a smaller λF or a larger λA are spelled out in the propositions above, and

they are summarized in Corollary 1 in Section 3.4: If λF decreases, the rate of self-regulation

increases in Phase 1 as well as in Phase 0. In Phase 1, the rate of governmental regulation (weakly)

decreases if λF falls, and the activists become less likely to give in by letting the boycott end in

failure. The activists also become less likely to give in if λA increases. For all these reasons, if either

λF decreases or λA increases, a boycott becomes more likely to be successful and the activist’s

payoff increases. The larger payoff raises the likelihood that the activists decide to enter the game

in the first place. Thus, we are more likely to have a Phase 0 equilibrium of type (i), where A is

active while R is passive in the case where λF is small and λA is large. As argued above, such

parameter values fit better with the US than with Europe, and so do the equilibrium outcomes,

namely likelihood of boycotts and the rates of regulation and self-regulation. The theory is thus

consistent with the documented differences in regulatory environments between the US and Europe.

Over time, it is likely that λF decreases and λA increases in Europe as well as in the US. Indeed,

trade liberalization reduces barriers to trade and lower transportation costs intensify competition,

while the rise of the social media makes it easier for activists to organize campaigns. More intense

competition raises the cost of being singled out in a campaign, and it reduces the cost of boycotting

one brand and switching to a substitute. With these developments, our theory predicts that private

politics should become more important over time, at the expense of public regulation: firms should

become more likely to self-regulate, activists will be less willing to give in during boycotts, and

33 In addition to geography, another reason for the difference in competitiveness may be due to stricter merger
policies in the US. For example, Bergman et al. (2010:4) write that “the US actively enforced against mergers. . . while
the EU has rarely brought action against oligopolies.”
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overall the societies should more frequently find themselves in equilibria where activists are more

active, while regulators are less so.

We are the first to admit that the reasoning in this section is not perfectly conclusive and

partly speculative. A careful test of our theory requires the collection of new data and statistical

analysis. Doing this is beyond the scope of the present paper, although we hope that our theory may

provide the foundation for a promising agenda of future research. Our brief look at the anecdotal

evidence suggests that a thorough empirical investigation might be academically rewarding as well

as politically important.

5 Concluding Remarks

Over the last decades, governments have lost their monopoly on regulation and faced competition

from both sides of the market. Thanks to reduced transaction costs, consumers are increasingly

able to influence or boycott firms, and firms are increasingly self-regulating and investing in CSR.

The economic and social consequences of the rise of private politics are important but not well

understood. According to Doh and Guay (2007:130), “governments may choose to let NGOs and

business resolve controversial issues voluntarily... This may not be optimal, since companies may

choose to resist NGO pressure knowing that government regulation will not be forthcoming.”

This paper started by raising four fundamental questions that the previous literature had not

addressed in a satisfactory way. We asked when private politics is effi cient, and described when the

better terminal outcome comes at the cost of delay. We asked who benefits and who loses from

private politics, and showed that the answer critically depends on whether the regulator is present.

Regarding the interaction with public regulation, we emphasized that activism and public politics

are strategic substitutes, while activism and corporate self-regulation are strategic complements.

We also asked how one may explain the raise of private politics over time, and why there are large

differences between the US and Europe, and concluded that our theoretical predictions can shed

light on these puzzles.

The four questions are important. If the total regulatory pressure is coming from market par-

ticipants as well as the government, we need to understand them all, as well as how they interact,

to determine the appropriate level of governmental regulation. Legislators need to know whether

private politics is suffi cient to achieve effi ciency, or whether private politics instead should be regu-

lated, perhaps restricted or, to the contrary, subsidized. One also needs to know how private politics

reacts to the introduction of governmental regulation. If we understand the difference between vari-

ous regulatory environments, we can also understand how and why the business environment differs
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between, e.g., the US and Europe, thus enabling us to compare concessions when different countries

negotiate trade or environmental agreements.

This paper is only one step toward a better understanding of private and public politics. A lot

remains to be done. On the empirical side, the theoretical predictions ought to be taken to the data

in a careful way; the anecdotal evidence discussed above is just indicative that such an effort may

be fruitful. On the theoretical side, future research should relax the assumptions we have imposed.

Several generalizations are feasible, we believe, since our model is relatively simple and tractable.

Regarding regulation and self-regulation, our analysis was simplified by assuming that

regulation– whether private of public– was binary: the firm is either regulated, or it is not. This

assumption fits well with some of the examples mentioned in the Introduction. In other cases,

however, it may be possible for the firm to make partial concessions. There are multiple ways of

generalizing our model in this direction. One possibility is that all parameters in the model, such

as the benefits as well as the costs, are proportional to the extent of self-regulation. For example,

the firm may produce several products (or in several geographical locations), and self-regulation of

(or in) one of them may be done independently of the others. If the boycott is restricted to the

product or the location in question, then all our results continue to hold without any change: if the

firm self-regulates a certain fraction of its facilities, regulation of the remaining fraction becomes

the subject of a new but similar subgame.34

Regarding activism, we have abstracted from several types of interactions between the activist

and the regulator. Our present theory treats these players as two different principals that both

seek to influence the same agent (i.e., the firm). In reality, the activist may consider an alternative

strategy of influencing the regulator. For example, the activist may initiate a costly campaign

against the government, hoping that such a pressure will prompt the government to act. Such a

campaign may be analogous to a boycott; the activist’s preferred strategy will then depend on the

relative cost and effectiveness. Alternatively, the activist might attempt to provide information to

the regulator, hoping that this will raise the likelihood for regulation. In both cases, the activist’s

two strategies may be strategic substitutes. While this paper has focused exclusively on the case

where the activist opts to influence the firm, future research should study regulatory campaigns and

the conditions under which they substitute or complement corporate boycotts.

34 If there are decreasing returns to scale when it comes to self-regulation, however, the analysis would be less
straightforward. In this case, it is likely that the firm may prefer to self-regulate up to the level at which the activist
and/or the regulator are suffi ciently satisfied. This level is smaller if a campaign is costly for the activist, and if direct
regulation is costly to the regulator. Although a careful analysis must await future research, our conjecture is that the
firm will never strictly prefer to self-regulate such as to satisfy only one of the regulator or the activist, since doing so
would lead to one of the two-player games we have analyzed, and in both of them self-regulation is a best response.
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Appendix A: Proofs of Main Results

Proof of Proposition 1. The equilibrium is given by rates of self-regulation and regulation φ and

γ, respectively, that are constant over time (stationarity requirement). Suppose φ = ∞; then R’s
best response is to never regulate (γ = 0), in which case F should not self-regulate either (φ = 0).

But if φ = 0, then R should regulate immediately (γ =∞), in which case F’s best response is also
self-regulate immediately (φ =∞), given the positive probability that of the two immediate actions
(by R and F), its action would take precedence. This proves that in equilibrium, φ and γ must lie

strictly between 0 and ∞, which implies that both F and R must be indifferent whether to act or
not at any moment in time. In particular, they should be indifferent between acting immediately

and not acting ever.

Consider F. If it self-regulates (at time 0), it gets payoff∫ ∞
0

(−c) exp (−rτ) dτ =
c

r
exp (−rτ)

∣∣∣τ=∞

τ=0
= − c

r
.

If it never self-regulates, its payoff equals (t is the time of government regulation, which arrives at

rate γ) ∫ ∞
0

γ exp (−γt)
(∫ t

0
0 (−rτ) dτ +

∫ ∞
t

(−c− k) exp (−rτ) dτ

)
dt

=

∫ ∞
0

(
−c− k
r

)
γ exp (− (γ + r) t) dt = −γ (c+ k)

r (γ + r)
.

Thus, F is indifferent if and only if γ = r ck . Similarly, R is indifferent if and only if
s−q
r = φs

r(φ+r) ,

i.e., φ = r s−qq . Therefore, these φ and γ constitute the unique equilibrium of the game without A.

It is straightforward to see that γ is increasing in c and decreasing in k, whereas F is increaing in

s and decreasing in q. Since the probability of F self-regulating before R regulates (the probability

of self-regulation) is given by∫ ∞
0

γ exp (−γt)
∫ t

0
φ exp (−φτ) dτdt =

∫ ∞
0

γ exp (−γt) (1− exp (−φt)) dt = 1− γ

φ+ γ
=

φ

φ+ γ
,

and the expected duration of boycott is∫ ∞
0

td (1− exp (−γt) exp (−φt)) =

∫ ∞
0

t (φ+ γ) exp (− (φ+ γ) t) dt =
1

φ+ γ
,

the comparative statics results discussed in the text follow immediately. �

Proof of Proposition 2. Here, we prove a weaker version of the claim: namely, if F and A play

linear strategies, then these strategies satisfy the properties stated in the Proposition. The fact that

F and A will, in fact, play linear strategies is proved in Appendix B.

In what follows, the time where boycott began is normalized to 0 to save on notation. Suppose

that A plays linear strategy t (θA) = 1
ρλA

θA for some ρ. Then the share of A that have given up by
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time t is Pr (θA < ρλAt) = 1− e−ρt, which implies that A stops the boycott at rate equal to ρ. For
F, the cost of boycott of duration τ equals 1−e−rτ−rτe−rτ

θF r2
, as follows from Lemma 1 of Appendix B.

Then the expected payoff of F if it concedes at time t is given by Lemma B4:

VF (t) =

∫ t

0

(
−1− e−rτ − rτe−rτ

θF r2

)
ρe−ρτdτ − e−ρt

(
c

r
e−rt +

1− e−rt − rte−rt
θF r2

)
.

Differentiating with respect to t, we get, after simplification,

dVF (t)

dt
= e−(ρ+r)t

(
ρ
c

r
−
(
c+

t

θF

))
.

The first-order condition is therefore satisfied at t = c
(
1 + ρ

r

)
θF , which is a linear strategy. Fur-

thermore, at this point,

d2VF (t)

dt2
= − (ρ+ r) e−(ρ+r)t

(
ρ
c

r
−
(
c+

t

θF

))
− e−(ρ+r)t 1

θF
= −e−(ρ+r)t 1

θF
< 0,

so this is a global maximum. Thus, if all types of F follow this best-response strategy, F’s rate of

self-regulation is given by φ1 = 1
λF c(1+ ρ

r )
, which gives us the first equation.

Similarly, if F plays linear strategy t (θF ) = 1
φ1λF

θF for some φ1, then A’s best response should

also be linear. Indeed, the expected payoff of A if it concedes at time t is given by

VA (t) =

∫ t

0

(
b

r
e−rτ − 1− e−rτ − rτe−rτ

θAr2

)
φ1e
−φ1τdτ − e−φ1t

(
l

r
e−rt +

1− e−rt − rte−rt
θAr2

)
.

We thus have
dVA (t)

dt
= e−(φ1+r)t

(
φ1

b+ l

r
−
(
−l +

t

θA

))
,

and the first-order condition is satisfied at t =
(
l + φ1

b+l
r

)
θA (and, as before, the second-order

condition is also satisfied). Therefore, A’s optimal rate of self-regulation is given by ρ = 1
λA(l+φ1 b+lr )

,

which gives the second equation.

These two equations have a unique positive solution (φ1, ρ). The simplest way to see this is

notice that plugging ρ from the second equation into the first results in a quadratic equation, thus

there are at most two values of ρ that solve the equation, and for each of them φ1 is determined

uniquely. Furthermore, the equations may be rewritten as

φ1 (ρ+ r) =
r

λF c
;(

φ1 +
lr

b+ l

)
ρ =

r

λA (b+ l)
.

The first defines a hyperbola with asymptotes given by φ1 = 0, ρ = −r, whereas the second defines
one with asymptotes φ1 = − lr

b+l , ρ = 0. Thus, these hyperbolas have one intersection with positive

(φ1, ρ) and one with negative (φ1, ρ), which proves uniqueness of the solution.

Consider an increase in λF . This does not affect the second equation, while the first hyperbola

moves down and to the left. The intersection point therefore moves along the second curve up
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and to the left. Thus, equilibrium value of φ1 decreases and equilibrium value of ρ increases. Since

the probability that the boycott ends in self-regulation equals φ1
φ1+ρ , an increase in λF makes the

boycott less likely to be successful. The comparative statics results with respect to other parameters

are considered similarly.

Let us prove that an increase in λF makes F better off and A worse off. Suppose that λF > λ′F ,

and the corresponding equilibrium rates are (φ1, ρ) and
(
φ′1, ρ

′). Since ρ′ > ρ, Lemma B24 in

Appendix B implies that F is better off if the rates are (φ1, ρ
′) than if they are (φ1, ρ), since this is

true for any fixed φ1. Furthermore, F is better off under
(
φ′1, ρ

′) than under (φ1, ρ
′), because φ′1 is

F’s best response to A regulating at rate ρ′, and φ1 is not a best response to this ρ
′. This proves

that F is better off. To show that A is worse off under λ′F , we can proceed similarly. Indeed, A

is better off under (φ1, ρ
′) than under

(
φ′1, ρ

′) by Lemma B24, because φ′1 < φ1, and it is better

off under (φ1, ρ) than under (φ1, ρ
′), because ρ is a best response to φ1 and ρ

′ is not. This proves

the payoff effect of an increase in λF . The other comparative statics results, specifically, that an

increase in λA makes A better off and F worse off, are proved analogously, and the explicit form of

payoffs may be found using the same Lemma B24:

uFA1 =
b

r

φ1

φ1 + ρ+ r
− l

r

ρ

φ1 + ρ+ r
+

1−
(

1 + ρ
φ1+r

)
ln
(

1 + φ1+r
ρ

)
(φ1 + r) (φ1 + ρ+ r)λA

;

vFA1 = − c
r

φ1

φ1 + ρ+ r
+

1−
(

1 + φ1
ρ+r

)
ln
(

1 + ρ+r
φ1

)
(ρ+ r) (φ1 + ρ+ r)λF

.

Lastly, let us prove the result on duration. The expected duration of the boycott is given by 1
φ1+ρ

(see the proof of Proposition 1 for an explicit calculation). Thus, a marginal increase in λF makes

the boycott shorter if and only if at (φ1, ρ), the slope of the curve ρ = r
λA(lr+(b+l)φ1) is between −1

and 0, i.e., if r(b+l)

λA(lr+(b+l)φ1)2
< 1 (or, substituting φ1 for ρ, if ρ

2 < r
λA(b+l)). This condition holds

for all φ1 if and only if it (weakly) holds at φ1 = 0, i.e., if λA > b+l
l2r
. The result on the effect of an

increase in λA on duration is proved similarly. This completes the proof. �

Proof of Proposition 3. Suppose first that u1 > 0. Then if F never self-regulates, A would start

a boycott immediately. In this case, F would self-regulate immediately as well, because there is a

positive probability that its action would take precedence. But if F self-regulates immediately, A

would not start a boycott, because u1 <
b
r (the self-regulation is delayed, there is a positive chance

of having to suffer − l
r , and the expected cost of boycott is positive). In that case, F would not self-

regulate. This proves that an equilibrium must take the form of rates (φ0, α), with φ0, α ∈ (0,+∞).

Therefore, both A and F are indifferent whether to act (start a boycott and self-regulate, respec-

tively) immediately, or never. For A, never acting yields φ0
φ0+r

b
r , and starting a boycott yields u1.

These are equal if and only if φ0 = ru1
b
r
−u1

. For F, never acting yields α
α+r

(
v1 − h

r

)
, and self-regulating

immediately yields − c
r ; these are equal if α = c

h
r
−v1− cr

. Under the assumption that v1 − h
r < −

c
r ,

the denominator is positive, and then these α and φ0 yield an equilibrium.
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By Proposition 2, if λF decreases or λA increases, then u1 increases and v1 decreases. Since φ0

is increasing in u1 and does not depend on v1, it increases as a result. Similarly, since α is incresing

in v1, it decreases as a result of this change. This proves the comparative statics results.

Now suppose that u1 < 0. Then there is no equilibrium where A starts a boycott, because if it

never does so, its expected payoff is nonnegative. At the same time, if α = 0, then F must choose

φ0 = 0. It is trivial to verify that α = 0, φ0 = 0 constitutes an equilibrium in this case.

Lastly, suppose u1 = 0, then the same α = 0, φ0 = 0 constitutes an equilibrium. Notice

that if φ0 > 0 (and if it equals ∞ in particular), then A gets a positive expected payoff from not

starting a boycott, thus α = 0 in equilibrium, in which case φ0 = 0, a contradiction. If φ0 = 0,

then A is indifferent between starting a boycott and not. If α = ∞, then F would prefer to self-
regulate, for finite α, not self-regulating is a best response for F if and only if α

α+r

(
v1 − h

r

)
≥ − c

r ,

so α ≤ c
−(v1−hr )− cr

. �

Proof of Proposition 4. Notice first that γ∗1 =∞ is impossible: in that case, F would self-regulate

immediately, and if so, R would prefer to wait instead. Thus γ∗1 ∈ [0,+∞). Let us start by analyzing

the game during-the-boycott game between F and A if R’s strategy is fixed at some γ∗1.

Let us start with the best response of F (to any strategy of A), and let us show that for F of type

θF , conceding at time t (θF ) = max
{(
c− k γ

∗
1
r

)
θF , 0

}
is a dominant strategy. To do so, consider

A that gives up at time T . Notice that if F gives up at some time τ , it gets − c
r , and if A calls the

boycott off at time τ , F gets the same amount. Consequently, the payoff of F if it gives up at time

t is given by

V ∗F (t) =

∫ min{t,T}

0

(
−c+ k

r
e−rτ − 1− e−rτ − rτe−rτ

θF r2

)
γ∗1e
−γ∗1τdτ

−e−γ∗1 min(t,T )

(
c

r
e−rmin(t,T ) +

1− e−rmin(t,T ) − rmin (t, T ) e−rmin(t,T )

θF r2

)
.

Notice that the function

Ṽ ∗F (t) =

∫ t

0

(
−c+ k

r
e−rτ − 1− e−rτ − rτe−rτ

θF r2

)
γ∗1e
−γ∗1τdτ − e−γ∗1t

(
c

r
e−rt +

1− e−rt − rte−rt
θF r2

)
is single-peaked in t and has a unique maximum achieved at t∗ (θF ) = max

{(
c− k γ

∗
1
r

)
θF , 0

}
(similar to the proof of Proposition 2); indeed,

dṼ ∗F (t)

dt
= e−(γ∗1+r)t

(
c− kγ

∗
1

r
− t

θF

)
,

which is positive for t < t∗ (θF ) and negative for t > t∗ (θF ). This implies that for T > t∗ (θF ),

function V ∗F (t) has a unique maximum at t = t∗ (θF ), and for T ≤ t∗ (θF ), V ∗F (t) is maximized at

any t ≥ T , and in particular at t∗ (θF ). This implies that playing t (θF ) = t∗ (θF ) is a dominant

strategy for F of type θF .

Let us now prove that γ∗1 ≥ rc
k is impossible in equilibrium. Indeed, if this is not the case,

then t∗ (θF ) = 0 for all θF . However, in this case, at time 0, R is strictly better off waiting rather
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than regulating, in which case γ∗1 ≥ rc
k is impossible. This proves that only γ

∗
1 <

rc
k is possible in

equilibrium, in which case t∗ (θF ) =
(
c− k γ

∗
1
r

)
θF > 0.

Notice that for any T < ∞, a positive share of types of A concede at or later than T in any

equilibrium. Suppose not, then there is some T ∈ [0,+∞) such that all types of A concede on

or before T . Without loss of generality, we can assume that T is the smallest T that satisfies

this property (it exists because the set of such T is closed). This means that for types of F that

satisfy θF > T(
c−k γ

∗
1
r

)
θF

, it is not a best response to concede earlier than T , as we proved earlier,

because there is a positive share of A that concede after T − ε for any ε > 0. If so, the types of

A with θA > T
l−ru∗2

would strictly prefer to concede later than T than at T or earlier, because the

marginal cost of waiting an extra period, T
θA
, is smaller than the benefit of getting l

r−u
∗
2 earlier (and,

furthermore, F may concede or R may regulate, leading to an even higher payoff. This contradiction

proves that a positive share of types of A concede later than T for any given T ∈ [0,∞). But if A

plays such strategy, then for F of type θF , the only best response is to play t (θF ) = t∗ (θF ) found

earlier, because it is the unique best response if A plays arbitrarily high T .

We have thus proved that in any equilibrium, F must play t (θF ) = t∗ (θF ) =
(
k
γ∗1
r + c

)
θF .

Therefore, F’s rate of self-regulation must equal φ∗1 = 1

λF

(
c−k γ

∗
1
r

) in any equilibrium where R

regulates at rate γ∗1 <
rc
k . Let us now write down the payoff of A of type θA given these γ

∗
1 and φ

∗
1;

since it gets the same payoffs from self-regulation by F and from regulation by R, it equals

V ∗A (t) =

∫ t

0

(
b

r
e−rτ − 1− e−rτ − rτe−rτ

θAr2

)
(φ∗1 + γ∗1) e−(φ∗1+γ∗1)τdτ

−e−(φ∗1+γ∗1)t
((

l

r
− u∗2

)
e−rt +

1− e−rt − rte−rt
θAr2

)
.

Similarly to the proof of Proposition 2, we can show that A also follows a linear strategy

t =
(
l − ru∗2 + (φ∗1 + γ∗1)

(
b+l
r − u

∗
2

))
θA, which implies the rate with which A calls the boy-

cott off ρ∗ = 1
λA(l−ru∗2+(φ∗1+γ∗1)(

b+l
r
−u∗2))

. We have thus proved that if R regulates with rate

γ∗1, then F must self-regulate at rate φ∗1 = 1

λF

(
c−k γ

∗
1
r

) , and A must stop the boycott at rate

ρ∗ = 1

λA

l−ru∗2+

 1

λF

(
c−k

γ∗1
r

)+γ∗1

( b+lr −u
∗
2)


.

Consider two possibilities. First, suppose that λF ≤ λF = q
cr(s−q) ; this implies that

1
λF c
≥ φ∗2,

where φ∗2 = r s−qq . Then for γ
∗
1 = 0, F self-regulates at rate φ∗1 ≥ φ∗2, and given that at rate φ

∗
2, R

is indifferent between regulating and not, then not regulating (playing γ∗1 = 0) is a best response

for R. This implies that for such parameter values, γ∗1 = 0, φ∗1 = 1
λF c
, ρ∗ = 1

λA

(
l−ru∗2+

b+l−ru∗2
λF c

) is
an equilibrium, because R plays a best response, and F and A play best responses to γ∗1 = 0 and

to each other’s strategies. On the other hand, there is no equilibrium with γ∗1 > 0, as in this case,

φ∗1 >
1
λF c
≥ φ∗2, and thus R is strictly better off not regulating, which contradicts γ∗1 > 0.
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Second, suppose that λF > λF = q
cr(s−q) . In this case, there is no equilibrium where

γ∗1 = 0, because in this case, φ∗1 = 1
λF c

< φ∗2, and R would be strictly better off regulat-

ing, which contradicts γ∗1 = 0. Thus, any equilibrium in this case must feature γ∗1 ∈
(
0, rck

)
,

so R must be indifferent between regulating and not. This is only possible if φ∗1 = φ∗2, i.e., if
1

λF

(
c−k γ

∗
1
r

) = φ∗2, which implies γ
∗
1 = r

k

(
c− 1

φ∗2λF

)
∈
(
0, rck

)
. For this γ∗1, φ

∗
1 = φ∗2 = r s−qq and

ρ∗ = 1

λA

(
l−ru∗2+

(
s−q
q

+ 1
k

(
c− 1

r
s−q
q λF

))
(b+l−ru∗2)

) . These values thus constitute a unique equilibrium
in this case.

Let us now prove the comparative statics results. If λF < λF , then an increase in λA reduces ρ∗

and does not affect φ∗1, thus making the boycott longer in expectation and more likely to succeed. An

increase in λF decreases φ∗1 and increases ρ
∗, making the boycott less likely to succeed. If λF > λF ,

then an increase in λA reduces ρ∗ and does not affect φ∗1 or γ
∗
1, which again makes the boycott

longer in expectation and more likely to succeed. At the same time, an increase in λF makes γ∗1
higher and ρ∗ lower, which makes the boycott more likely to succeed.

Now consider the effect of parameters on the payoffs of F and A. Suppose that λA increases. This

does not change λF , and thus does not affect whether R is active during the boycott; furthermore,

it does not change γ∗1 and φ
∗
1, but only decreases ρ

∗. This means that for any θA, the stopping

time of A, t (θA), is higher, which increases the payoff of types of F with t∗ (θF ) > t (θA) without

affecting those with t∗ (θF ) < t (θA); thus, the expected payoff of F is higher for any realization of

θA. Consequently, a higher λA implies that the expected payoff of F, v∗1 is higher. On the other

hand, the effect of an increase in λA on u∗1 is also positive: indeed, γ
∗
1 and φ

∗
1 do not change, and

if we take any θA, A of type θA would be strictly better off from higher λA even if he did not

change his equilibrium behavior (because of lower cost of boycott), and he may do even better by

reoptimizing. Thus, u∗1 also increases in λA.

Suppose that λF increases. This makes φ∗1 + γ∗1 lower as long as λF < λF , but makes it higher if

λF > λF . Similarly to Lemma B23 we can show that V ∗A (t) is increasing in φ∗1 +γ∗1 for any strategy

of A of type θA, and similarly to Lemma B24 we can deduce from that that u∗1 is increasing in

φ∗1 + γ∗1. Therefore, u
∗
1 is decreasing in λF for λF < λF and increases if λF > λF .

Lastly, let us describe the set of parameter values such that u∗1 ≥ u∗2. We have proved that u∗1 (λF )

as a function of λF is U-shaped with a minimum achieved at λF = λF . We prove the following two

results: that limλF→0 u
∗
1 (λF ) > u∗2 and that limλF→∞ u

∗
1 (λF ) ≤ u∗2. The latter would imply that

u∗1
(
λF
)
< u∗2, and thus u

∗
1 (λF ) < u∗2 for any λF ≥ λF . These two results (together with continuity)

would imply that there is λ̂F ∈
(
0, λF

)
such that u∗1

(
λ̂F

)
= u∗2, and u

∗
1 (λF ) > u∗2 for λF < λ̂F and

u∗1 (λF ) < u∗2 for λF ∈
(
λ̂F , λF

)
, which together would yield the desired property of λ̂F . Thus, let

us show that limλF→0 u
∗
1 (λF ) > u∗2. Indeed, as for λF < λF , γ∗1 = 0, and as λF → 0, φ∗1 → ∞ and

ρ∗ → 0. This implies that the boycott ends with F self-regulating with arbitrarily high probability

and arbitrarily fast, while the rate of A calling the boycott off remains bounded away from ∞.
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Thus, limλF→0 u
∗
1 (λF ) = b

r >
s−q
q

+ c
k

s−q
q

+ c
k

+1
b
r = u∗2. To prove that limλF→∞ u

∗
1 (λF ) ≤ u∗2, notice that

for λF > λF , φ∗1 = φ∗2, and as λF →∞, γ∗1 → rc
k = γ∗2, and ρ

∗ → 1

λA

(
l−ru∗2+

(
s−q
q

+ c
k

)
(b+l−ru∗2)

) . This
implies that the total rate of regulation φ∗1 + γ∗1 tends to φ

∗
2 + γ∗2, but since ρ

∗ is bounded away

from both 0 and ∞, limλF→∞ u
∗
1 (λF ) < u∗2 because of positive expected cost of boycott, as well as

positive probability of having to face the loss − l
r .

As we just showed, these results imply existence of cutoff λ̂F . It remains to prove that this

cutoff is increasing in λA. This immediately follows from that u∗1−u∗2 is increasing in λA and locally
decreasing in λF (because u∗2 does not depend on either λA or λF ), which completes the proof. �

Proof of Proposition 5. Notice that R’s payoffduring the boycott is given by w∗1 = s−q
r if λF ≥ λF

and by w∗1 =
φ∗1

φ∗1+ρ∗+r
s
r + ρ∗

φ∗1+ρ∗+r
s−q
r if λF < λF , in which case w∗1 >

s−q
r as follows from Proposition

4. We define u as follows:

u =



s−q
s

b
r if w∗1 = 1

r (s− q) ;

s−q

1+ 1

s(−(v∗1−hr )− cr )
(w∗1−

s−q
r )c

−1


s

b
r if w∗1 ∈

(
1
r (s− q) ,

(
1
r +

−(v∗1−
h
r )− cr
c

)
(s− q)

)
;

0 if w∗1 >
(

1
r +

−(v∗1−
h
r )− cr
c

)
(s− q) ;

then it satisfies 0 ≤ u ≤ s−q
s

b
r =

s−q
q

s−q
q

+1
b
r <

s−q
q

+ c
k

s−q
q

+ c
k

+1
b
r = u∗2. Notice that u is well-defined, because

w∗1 ≥
s−q
r , as R can always guarantee this payoff at the beginning of boycott. We now prove that

the proposition holds for this value u. Before proceding, we also define

ũ =


0 if w∗1 ∈

[
1
r (s− q) ,

(
1
r +

−(v∗1−
h
r )− cr
c

)
(s− q)

)
;

1
1+ k

c−(−(v∗1−hr )− cr )
s−q

w∗1−
s−q
r

b
r if w∗1 >

(
1
r +

−(v∗1−
h
r )− cr
c

)
(s− q) ;

in this case, ũ > 0 if and only if u = 0, and it is straightforward to verify that ũ < u∗2.

We start by describing possible equilibria as well as conditions for their existence. First, suppose

that A does not start a boycott (α∗ = 0). In this case, the game is between F and R, which is

identical to the game studied in Subsection 3.2. By Proposition 1, if such equilibrium exists, it must

have γ∗0 = r ck and φ
∗
0 = r s−qq . This is an equilibrium if and only if not starting a boycott is indeed

a best response for A under such rates (indeed, F and R are playing best responses by Proposition

1). If A starts a boycott, its expected discounted payoff is u∗1; if it does not, then since the game is

isomorphic to Phase 2, its payoff is u∗2. Therefore, there exists an equilibrium with α∗ = 0, γ∗0 = r ck
and φ∗0 = r s−qq if and only if u∗1 ≤ u∗2.

Second, suppose that α∗ = ∞, so A starts a boycott immediately. Since we assumed that

v∗1− h
r < −

c
r , this cannot be an equilibrium, because in this case, F would self-regulate immediately,

but then A would prefer not to start a boycott.
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Third, suppose that φ∗0 = 0, but α∗ ∈ (0,∞) (the case where α∗ is extreme was already analyzed).

This is only possible where A is indifferent between starting the boycott and not, and since φ∗0 =

0, it must be that γ∗0 = r2 u∗1
b−ru∗1

. This is only possible if u∗1 ≥ 0. Thus, if u∗1 = 0, we have

equilibrium φ∗0 = γ∗0 = 0 as long as α∗ is such that φ∗0 = 0 is optimal for F and γ∗0 = 0 is

optimal for R. The former is true if α∗

α∗+r

(
v∗1 − h

r

)
≥ − c

r , i.e., for α
∗ ≤ α∗1 = c

−(v∗1−
h
r )− cr

, where

the denominator is positive by assumption. The latter can only be true if λF < λF (so F self-

regulates at a faster rate during the boycott than φ∗2 that would make R indifferent), and then the

condition is α∗

α∗+r

(
φ∗1

φ∗1+ρ∗+r
s
r + ρ∗

φ∗1+ρ∗+r
s−q
r

)
≥ s−q

r , which is equivalent to α
∗ ≥ α∗2 =

r(φ∗1+ρ∗+r)
φ∗1q
s−q−1

=

s−q
w∗1−

s−q
r

. Thus, if u∗1 = 0, such equilibrium exists whenever λF < λF and α∗1 ≥ α∗2, where the

latter is equivalent to u∗1 < ũ. Now consider the case where u∗1 > 0, in which case γ∗0 > 0.

For R to be indifferent, it must be that λF < λF and α∗ = α∗2 = s−q
w∗1−

s−q
r

. This constitutes

an equilibrium if and only if for these values of γ∗0 and α∗, F prefers to not self-regulate, the

condition for which is the following: α∗

α∗+γ∗0+r

(
v∗1 − h

r

)
+

γ∗0
α∗+γ∗0+r

(
− c+k

r

)
≥ − c

r , which is equivalent

to γ∗0 ≤ r ck −
rα∗

k

(
−
(
v∗1 − h

r

)
− c

r

)
, which after plugging in γ∗0 and α

∗ becomes r2 u∗1
b−ru∗1

≤ r ck −
r
k

(
−
(
v∗1 − h

r

)
− c

r

) s−q
w∗1−

s−q
r

. This condition simplifies as u∗1 ≤ ũ; this implies that equilibrium with

φ∗0 = 0 and α∗ ∈ (0,∞) exists if u∗1 ∈ [0, ũ] and λF < λF .

Fourth, suppose that φ∗0 =∞, but α∗ ∈ (0,∞). Then R strictly prefers not to regulate (γ∗0 = 0)

and A strictly prefers not to start a boycott, because u∗1 <
b
r . This contradicts α

∗ ∈ (0,∞), so

φ∗0 =∞ and α∗ ∈ (0,∞) cannot happen in equilibrium.

Fifth, suppose that γ∗0 = 0, but α∗, φ∗0 ∈ (0,∞). Then both A and F are indifferent between

acting and not; A is indifferent if and only if φ∗0 = r2 u∗1
b−ru∗1

, whereas F is indifferent if and only if

α∗ = c
−(v∗1−

h
r )− cr

. Thus, this equilibrium exists if and only if u∗1 > 0 and R does not want to intervene

for such φ∗0 and α
∗. If λF ≥ λF , then this last condition is equivalent to φ∗0 ≥ φ∗2, which is equivalent

to r2 u∗1
b−ru∗1

≥ r s−qq , which holds if and only if u
∗
1 ≥

s−q
s

b
r = u (indeed, λF ≥ λF implies w∗1 = s−q

r ). If

λF < λF , not regulating is a best response for R if and only if
φ∗0

φ∗0+α∗+r
s
r + α∗

φ0+α∗+rw
∗
1 ≥

s−q
r , where

w∗1 =
φ∗1

φ∗1+ρ∗+r
s
r + ρ∗

φ∗1+ρ∗+r
s−q
r satisfies w∗1 ∈

( s−q
r , sr

)
, since λF < λF . The inequality is equivalent to

φ∗0 ≥ rα∗

q

( s−q
r − w

∗
1

)
+ r s−qq , which is automatically satisfied if the numerator is nonpositive (this is

true if and only if w∗1 ≥
s−q
r + s−q

α∗ ), and otherwise is equivalent to u
∗
1 ≥ b

r

min
(
rα∗
q ( s−qr −w

∗
1)+r s−q

q
,0
)

min
(
rα∗
q ( s−qr −w

∗
1)+r s−q

q
,0
)

+r
.

Since α∗ = c
−(v∗1−

h
r )− cr

, we find that such equilibrium exists if and only if u∗1 ≥ u in all cases.
Sixth, suppose that γ∗0 = ∞, but α∗, φ∗0 ∈ (0,∞). In this case, it is a best response for F to

try to preempt regulation by R, so φ∗0 must equal ∞, which is a contradiction. Thus, there are no
equilibria satisfying this property.

Seventh and last, suppose that α∗, φ∗0, γ
∗
0 ∈ (0,∞). Since A is indifferent, it must be that

φ∗0+γ∗0
φ∗0+γ∗0+r

b
r = u∗1, which uniquely pins down φ∗0 + γ∗0 = r2 u∗1

b−ru∗1
; thus, such equilibria exist only

if u∗1 > 0. Suppose λF ≥ λF ; then R is indifferent if and only if φ∗0 = φ∗2 (because after the boycott

starts, the rate of F self-regulating is φ∗1 = φ∗2), which pins down γ
∗
0 = r2 u∗1

b−ru∗1
−φ∗2, and this implies

that such equilibrium can exist only if u∗1 >
s−q
s

b
r , which equals u in this case. In this case, F being
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indifferent implies that α∗

α∗+γ∗0+r

(
v∗1 − h

r

)
+

γ∗0
α∗+γ∗0+r

(
− c+k

r

)
= − c

r ; here, the left-hand side equals
γ∗0
γ∗0+r

(
− c+k

r

)
if α∗ = 0, which exceeds − c

r if and only if γ
∗
0 < γ∗2, and if α

∗ = ∞ then it equals

v∗1 − h
r < −

c
r by assumption. Consequently, a value α

∗ ∈ (0,∞) for which F is indifferent exists if

and only if φ∗0 + γ∗0 < φ∗2 + γ∗2, which is equivalent to r
2 u∗1
b−ru∗1

< r2 u∗2
b−ru∗2

, i.e., u∗1 < u∗2. Thus, in this

case, a fully mixed equilibrium exists if and only if u∗1 ∈ (u, u∗2).

Now suppose λF < λF ; in this case, R is indifferent if and only if φ∗0
φ∗0+α∗+r

s
r +

α∗

φ∗0+α∗+r

(
φ∗1

φ∗1+ρ∗+r
s
r + ρ∗

φ∗1+ρ∗+r
s−q
r

)
= s−q

r and F is indifferent if and only if α∗

α∗+γ∗0+r

(
v∗1 − h

r

)
+

γ∗0
α∗+γ∗0+r

(
− c+k

r

)
= − c

r . The first of these equations defines φ∗0 as an implicit function of α
∗,

namely, φ∗0 (α∗) = r s−qq −
φ∗1−r

s−q
q

φ∗1+ρ∗+rα
∗, so it is monotonically decreasing in α∗, since in this case

φ∗1 > φ∗2 = r s−qq , and achieving 0 at α∗ = r (φ∗1 + ρ∗ + r)
s−q
q

φ∗1−r
s−q
q

∈ (0,∞). The second equa-

tion also defines γ∗0 implicitly as a function of α
∗; specifically, γ∗0 (α∗) = rc

k + r
k

(
v∗1 − h

r + c
r

)
α∗,

which is decreasing in α∗, since v∗1 − h
r < − c

r ; furthermore, it equals γ
∗
0 = rc

k for α∗ = 0 and

monotonically decreases to 0 at α∗ = c
−(v∗1−

h
r )− cr

. Thus, at α∗ = 0, total rate of regulation

r s−qq + r ck would give A utility u
∗
2, and since it is decreasing in α, such equilibrium may exist only

if u∗1 < u∗2. In this case, it exists if and only if for α
∗ = min

(
r (φ∗1 + ρ∗ + r)

s−q
q

φ∗1−r
s−q
q

, c
−(v∗1−

h
r )− cr

)
,

the total rate of regulation φ∗0 (α∗) + γ∗0 (α∗) < r2 u∗1
b−ru∗1

. This condition holds if and only if

α∗ = r (φ∗1 + ρ∗ + r)
s−q
q

φ∗1−r
s−q
q

, γ∗0 (α∗) < r2 u∗1
b−ru∗1

, and for α∗ = c
−(v∗1−

h
r )− cr

, φ∗0 (α∗) < r2 u∗1
b−ru∗1

. The

former condition is equivalent to rc
k + r

k

(
v∗1 − h

r + c
r

)
r (φ∗1 + ρ∗ + r)

s−q
q

φ∗1−r
s−q
q

> r2 u∗1
b−ru∗1

, or equiva-

lently rc
k + r

k

(
v∗1 − h

r + c
r

) s−q
w∗1−

s−q
r

> r2 u∗1
b−ru∗1

, which is equivalent to u∗1 > ũ. The latter condition is

equivalent to r s−qq −
φ∗1−r

s−q
q

φ∗1+ρ∗+rα
∗ < r2 u∗1

b−ru∗1
, or equivalently r s−qq −

r
q

(
w∗1 −

s−q
r

)
α∗ < r2 u∗1

b−ru∗1
, which,

after simplification, is equivalent to u∗1 > u. Thus, in this case, this equilibrium exists if and only if

u∗1 ∈ (max {u, ũ} , u∗2).

We therefore have the following result. For u∗1 > u∗2, the equilibrium is unique, with α∗ =
c

−(v∗1−
h
r )− cr

, φ∗0 = r2 u∗1
b−ru∗1

, γ∗0 = 0; it is straightforward to check that it is stable. For u∗1 ∈

(max {u, ũ} , u∗2), there are three equilibria: the previous one, one given by α∗ = 0, φ∗0 = r s−qq ,

γ∗0 = r ck (both stable), and a fully mixed, which is unstable. For u
∗
1 ∈ (0, ũ), there are the two stable

equilibria as in the previous case, and α = s−q
w∗1−

s−q
r

, φ∗0 = 0, γ∗0 = r2 u∗1
b−ru∗1

, which is unstable. For

u∗1 < max (u, 0), the equilibrium is unique, given by α∗ = 0, φ∗0 = r s−qq , γ
∗
0 = r ck , and it is stable.

The borderline cases are straightforward, except for the case u = u∗1 = 0 < ũ, where there is a

continuum of equilibria given by c
−(v∗1−

h
r )− cr

≤ α∗ ≤ s−q
w∗1−

s−q
r

, φ∗0 = 0, γ∗0 = 0, with only the one

with the highest α∗ being stable. This proves that the sets of stable equilibria are as described in

the Proposition.

Lastly, if u < u∗1 < u∗2, A prefers the equilibrium where α∗ = 0; indeed, in this case his payoff is

higher than u∗1, whereas in the other equilibria he starts the boycott with a positive probability, so
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his payoff is u∗1. Similarly, R prefers the equilibrium where γ∗0 = 0, as its payoff is then higher than

w∗1. This completes the proof. �

Proof of Corollary 1. If following entrance by A, the equilibrium where A starts a boycott with a

positive probability is played, then the expected payoff of A from entering is u∗1, whereas if it does

not enter it gets u∗2. In the proof of Proposition 4, we showed that u
∗
1 > u∗2 if and only if λF < λ̂F ,

where λ̂F < λF . Consider the stable equilibrium α∗ = c
−(v∗1−

h
r )− cr

, φ∗0 = r2 u∗1
b−ru∗1

, γ∗0 = 0 played

after such entrance. Since λF < λF , γ∗1 = γ∗1 = 0, whereas γ∗2 > 0.

Notice that in this case, φ∗1 > φ∗2 + γ∗2, because φ
∗
1 ≤ φ∗2 + γ∗2 would imply that u

∗
1 <

φ∗1
φ∗1+ρ∗+r

b
r <

φ∗1
φ∗1+r

b
r ≤

φ∗2+γ∗2
φ∗2+γ∗2+r

b
r = u∗2, a contradiction. Suppose, to obtain a contradiction, that φ

∗
0 ≥ φ∗1; then

the total rate of regulation after A starts a boycott will be weakly lower before it ends and strictly

lower after that, because we proved that φ∗1 > φ∗2 + γ∗2. Taking account the cost of boycott and the

possible loss of lr , we find that A would be better off if it did not start a boycott, which contradicts

α∗ > 0. Thus, φ∗0 < φ∗1. Now suppose to obtain a contradiction that φ
∗
0 < φ∗2 +γ∗2. But u

∗
1 =

φ∗0
φ∗0+r

b
r ,

and φ∗0 < φ∗2 +γ∗2, would imply u
∗
1 =

φ∗0
φ∗0+r

b
r <

φ∗2+γ∗2
φ∗2+γ∗2+r

b
r = u∗2, a contradiction. We have thus proved

that φ∗1 > φ∗0 ≥ φ∗2 + γ∗2 > φ∗2. The comparative statics results follow from Proposition 4. Indeed,

both u∗1 and v
∗
1 increase in λA, and thus φ

∗
0 and α

∗ increase in λA. Furthermore, since λF < λF ,

then u∗1 is decreasing in λF , and therefore so does φ
∗
0.

Consider the opposite case, where λF > λ̂F . In this case, u∗1 < u∗2, so A does not enter and the

equilibrium φ∗0 = φ∗2 and γ∗0 = γ∗2 is played; thus φ
∗
0 and γ

∗
0 are not affected by λA or λF . This

completes the proof. �
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Appendix B: Analysis of the boycott game (online appendix)

This Appendix contains a detailed analysis of war of attrition with private information about the

ongoing cost of staying in the game. The setting is different from Ponsati and Sákovics (1995)

because (a) it assumes that private information affects the ongoing cost rather than benefit of

winning; (b) it assumes increasing, rather than constant, marginal cost of boycott; (c) parameters

are such that there is a unique equilibrium, in which the two players concede at a constant rate.

Furthermore, we characterize some comparative statics results and explicitly compute expected

payoffs. Some notation and some lines of argument are inspired by those in Ponsati and Sákovics

(1995); at the same time, the models are suffi ciently different so that most lemmas in that paper are

not directly applicable. The boycott game between firm and activist in the main part of the paper

is a particular case of the game solved here; but the analysis of this game seems to be of suffi cient

independent interest to warrant an independent treatment in this online Appendix.

B1 Setup

The game is played by two agents, A and F . In what follows, we let i denote a generic agent,

and then j denotes the other agent. The agents have private types, θA and θF , which are both

positive numbers. Their distributions are common knowledge: θA is distributed exponentially with

expectation λA, and θF is distributed exponentially with expectation λF . Thus, their cumulative

and partial distribution functions are given by:

FA (x) = 1− exp

(
− x

λA

)
, fA (x) =

1

λA
exp

(
− x

λA

)
,

FF (x) = 1− exp

(
− x

λF

)
, fF (x) =

1

λF
exp

(
− x

λF

)
.

The marginal cost of boycott at time τ is assumed to equal τ
θi
.

Each player i has a single strategy, namely, given his type θi, he decides on the time where he

concedes to the other player. We denote this strategy by σi (θi). If one of the players concedes, the

game ends. Agents have discount factors rA and rF , respectively. The payoffs of A and F depend

on the event that happened first and the time of the event, and are the following (in case of a draw,

there is a lottery such that both events that occurred at the moment have positive probabilities of

determining the payoffs).

If min (σA, σF ) = σA = t (the game stops at time t due to decision of player A), then payoffs

are:

UA = LA exp (−rAt)−
∫ t

0

τ

θA
exp (−rAτ) dτ ;

UF = WF exp (−rF t)−
∫ t

0

τ

θF
exp (−rF τ) dτ ;
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if min (σA, σF ) = σF = t (the game stops at time t due to decision of player F ), then payoffs are:

UA = WA exp (−rAt)−
∫ t

0

τ

θA
exp (−rAτ) dτ ;

UF = LF exp (−rF t)−
∫ t

0

τ

θF
exp (−rF τ) dτ.

In what follows, we maintain the assumption that for each player i ∈ {A,F}, Wi ≥ 0 > Li.

B2 Analysis

To analyze the game, we need to solve for the strategies of different types of players A and F .

Strictly speaking, a pure strategy of player i ∈ {A,F} with type θi is the time t at which the
player concedes (if the game is not over yet), and a mixed strategy is a probability distribution over

possible times (i.e., over R+). We capture this distribution with its c.d.f.: For player i with type

θi playing profile σ, let Hσ
i (θi; t) be the probability that this type concedes no later than time t.

The following notation is also helpful: If the players play strategy profile σ, then for i ∈ {A,F}, let
Hσ
i (t) denote the probability that player i concedes not later than t:

Hσ
i (t) =

∫ ∞
0

Hσ
i (θi; t) fi (θi) dθi;

in other words, this is the expectation that player i concedes no later than time t taken over possible

realizations of this player’s type, θi.

We start with the following mathematical result (this was indirectly used in Ponsati and Sákovics,

1995, without proof; we complete this gap).

Lemma B1 Suppose that function f monotonically increasing and right-continuous on some in-

terval (a, b). Suppose, furthermore, that for some K > 0 the following is true: for any q ∈ (a, b)

and for any ε > 0 there is p ∈ (q − ε, q) such that

f (q)− f (p) ≤ K (q − p) .

Then f is Lipschitz-continuous with parameter K.

Proof. Take any x, y such that a < x < y < b. We need to prove that f (y) − f (x) ≤ K (y − x).

Consider the set X defined by

X = {ξ ∈ (x, y) : f (y)− f (ξ) ≤ K (y − ξ)} .

By the condition of the Lemma, X is nonempty. Let us prove that inf X = x; in this case,

right-continuity of f (·) would imply that f (y) − f (x) ≤ K (y − x), which would prove Lipschitz-

continuity.
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Suppose not, i.e., inf X = l > x. By right-continuity of f (·), l ∈ X. But since l ∈ (a, b), then if

we take ε = l−x, there would exist p ∈ (l − ε, l) such that f (l)− f (p) ≤ K (l − p). But this would
imply that

f (y)− f (p) = (f (y)− f (l)) + (f (l)− f (p)) ≤ K (y − l) +K (l − p) = K (y − p) ,

where we used that l ∈ X. However, this inequality implies that p ∈ X, contradicting that l = inf X.

This contradiction proves that inf X = x, which proves Lipschitz-continuity of f .

The following lemma defines and studies the properties of a certain function z (t).

Lemma B2 Define

z (t) = z (t; ri) = 1− e−rit − rite−rit. (B1)

Then for any ri > 0, z (t) is (strictly) monotonically increasing for t ∈ [0,+∞), and z (0) = 0,

limt→∞ z (t) = 1. Furthermore, for any a < b there is some c ∈ (a, b) such that

z (b)− z (a) =
(
e−ria − e−rib

)
ric. (B2)

Proof. We have
dz

dt
= tr2

i e
−tri > 0,

and the results for z (0) and limt→∞ z (t) are straightforward. Finally notice that z (t) = f
(
e−rit

)
,

where f (y) = 1− y + y ln y. We have
df

dy
= ln y,

which implies, by Lagrange theorem, that for any p < q,

f (q)− f (p) = (ln y) (q − p)

for some y ∈ (p, q). If we let q = e−ria and p = e−rib (so p < q), we have

z (a)− z (b) = (ln y)
(
e−ria − e−rib

)
If we let c = − ln y

ri
, then c ∈ (a, b), and (B2) follows.

The next lemma rules out the possibility that two players concede at once with a positive

probability.

Lemma B3 If Hσ
j (t) is discontinuous at some time t (i.e., there is a positive probability of con-

ceding by player j at time t), then for any type θi of player i, conceding at time t is not a best

response and thus happens with probability 0. Furthermore, if t > 0, then there is ε > 0 such that

Hσ
i (θi; t) = Hσ

i (θi; t− ε) (this ε may depend on θi).
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Proof. Let p be the probability that player j concedes at time t, so p = Hσ
j (t)− limε↘0H

σ
j (t− ε)

if t > 0, and p = Hσ
j (0) if t = 0. If player i concedes at t, then there is a lottery, which he may

lose with a positive probability α. By conceding at t′ = t + δ for arbitrarily small δ, he wins with

additional probability pα, and thus his expected utility is increased by at least pαe−rit (Wi − Li)−∫ t+δ
t e−riτ τθidτ . For suffi ciently small δ this is positive, thus deviation to t′ is profitable. This

contradicts that σ is an equilibrium, proving that player i cannot concede at t.

If t > 0, then similar reasoning proves that player i with type θi cannot concede at t− δ (again,
for δ suffi ciently small) either, thus there is ε > 0 such that Hσ

i (θi; t) = Hσ
i (θi; t− ε).

We next show the role of z (t) in calculating the cost of boycott.

Claim 1 The discounted net present cost of a game up until time t for a player of type θi with

discount factor ri is given by ∫ t

0
e−riτ

τ

θi
dτ =

z (t)

θir2
i

,

where z (t) is defined by (B1).

Proof. We have ∫ t

0
e−riτ

τ

θi
dτ =

1

θi

∫ t

0
e−riττdτ

=
1

θir2
i

∫ rit

0
e−riτ (riτ) d (riτ)

=
1

θir2
i

∫ rit

0
e−yydy

= − 1

θir2
i

e−y (y + 1)
∣∣y=rit

y=0

=
1

θir2
i

− 1

θir2
i

e−rit (rit+ 1)

=
1

θir2
i

(
1− e−rit − rite−rit

)
.

The last expression equals z(t)
θir2i

by definition of z (t).

The following lemma defines the payoff of player i of type θi if he concedes at time t, where

Hσ
j (t) is continuous.

Lemma B4 If player i concedes at time t ≥ 0 at which Hσ
j (t) is continuous, then his payoff (net

of cost of boycott) is given by

Vi (t) = Vi (t; θi) =

∫ t

0

(
Wie

−riτ − z (τ)

θir2
i

)
dHσ

j (τ) +
(
1−Hσ

j (t)
)(

Lie
−rit − z (t)

θir2
i

)
. (B3)
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Proof. Since under the stated conditions the two players concede at once with probability 0, the

result follows immediately.

The next lemma suggests a (relatively) simple formula for the increment of Vi (t) between two

time points.

Lemma B5 The function Vi (t) satisfies, for any a, b:

Vi (b)− Vi (a) =

∫ b

a

(
e−riτWi − e−riaLi

)
dHσ

j (τ)−
(
1−Hσ

j (b)
) (
e−ria − e−rib

)
Li

− 1

θir2
i

(∫ b

a
(z (τ)− z (a)) dHσ

j (τ) +
(
1−Hσ

j (b)
)

(z (b)− z (a))

)
. (B4)

Proof. This follows from

Vi (b)− Vi (a) =

∫ b

0
e−riτWidH

σ
j (τ) +

(
1−Hσ

j (b)
)
e−ribLi −

1

θir2
i

(∫ b

0
z (τ) dHσ

j (τ) +
(
1−Hσ

j (b)
)
z (b)

)
−
∫ a

0
e−riτWidH

σ
j (τ)−

(
1−Hσ

j (a)
)
e−riaLi +

1

θir2
i

(∫ a

0
z (τ) dHσ

j (τ) +
(
1−Hσ

j (a)
)
z (a)

)
=

∫ b

a
e−riτWidH

σ
j (τ)−

(
1−Hσ

j (b)
) (
e−ria − e−rib

)
Li −

(
Hσ
j (b)−Hσ

j (a)
)
e−riaLi

− 1

θir2
i

(∫ b

a
z (τ) dHσ

j (τ) +
(
1−Hσ

j (b)
)

(z (b)− z (a))−
(
Hσ
j (b)−Hσ

j (a)
)
z (a)

)
=

∫ b

a

(
e−riτWi − e−riaLi

)
dHσ

j (τ)−
(
1−Hσ

j (b)
) (
e−ria − e−rib

)
Li

− 1

θir2
i

(∫ b

a
(z (τ)− z (a)) dHσ

j (τ) +
(
1−Hσ

j (b)
)

(z (b)− z (a))

)
.

We now prove that neither player concedes too fast (i.e., we establish a lower bound on concession

time).

Lemma B6 Player i with type θi concedes no earlier than t̆ (θi) = ri |Li| θi; in other words,
limε↘0H

σ
i

(
θi; t̆i (θi)− ε

)
= 0. Furthermore, Hσ

i (0) = 0 (so there is no atom in distribution Hσ
i (·)

at zero) and Hσ
i (t) < 1 for all t <∞ (so player i does not concede with probability 1 by some fixed

time t).

Proof. We start by proving a weaker version of the statement. For i ∈ {A,F}, define Ti =

inf {t : Hσ
i (t) = 1} if the latter set is nonempty and Ti = ∞ otherwise. Let us prove that player i

with type θi concedes no earlier than t̂ (θi) = min
(
t̆ (θi) , Tj

)
.

Suppose that this is not the case, and some type θi concedes at t0 < min
(
t̆ (θi) , Tj

)
. We then

have Hσ
j (t0) < 1 by definition of Tj ; furthermore, by Lemma B3, we have that Hσ

j (·) is continuous
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at t0. Let t̆ = t̆ (θi); we then have, by (B4), that

Vi
(
t̆
)
− Vi (t0) =

∫ t̆

t0

(
e−riτWi − e−rit0Li

)
dHσ

j (τ)−
(
1−Hσ

j

(
t̆
)) (

e−rit0 − e−ri t̆
)
Li

− 1

θir2
i

(∫ t̆

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̆
)) (

z
(
t̆
)
− z (t0)

))
≥ −

(
Hσ
j

(
t̆
)
−Hσ

j (t0)
)
e−rit0Li −

(
1−Hσ

j

(
t̆
)) (

e−rit0 − e−ri t̆
)
Li

− 1

θir2
i

((
Hσ
j

(
t̆
)
−Hσ

j (t0)
) (
z
(
t̆
)
− z (t0)

)
+
(
1−Hσ

j

(
t̆
)) (

z
(
t̆
)
− z (t0)

))
= −

(
1−Hσ

j (t0)
)
e−rit0Li +

(
1−Hσ

j

(
t̆
))
e−ri t̆Li

− 1

θir2
i

(
1−Hσ

j (t0)
) (
z
(
t̆
)
− z (t0)

)
≥ −

(
1−Hσ

j (t0)
) (
e−rit0 − e−ri t̆

)
Li −

1

θir2
i

(
1−Hσ

j (t0)
) (
z
(
t̆
)
− z (t0)

)
>

(
1−Hσ

j (t0)
) (
e−rit0 − e−ri t̆

)(
−Li −

1

θir2
i

rit̆

)
= 0,

since −Li − 1
θir2i

rit̆ = |Li| − 1
θiri

ri |Li| θi = 0. If Hσ
j (·) is continuous at t̆, then Vi

(
t̆
)
is the payoff

of player i from deviating to t̆, which proves that type θi has a profitable deviation, which is a

contradiction. Otherwise, if Hσ
j (·) has an atom at t̆, then we can find t′ < t̆ arbitrarily close to t̆

and such that Hσ
j (·) is continuous at t′; if so, the calculation above would prove that Vi (t′) > Vi (t0),

and then type θi would have a profitable deviation to t′, again a contradiction. This proves teh

weaker version of the statement.

To prove the stronger version, it suffi ces to prove that Ti = Tj =∞. Notice that we must have
Ti = Tj . Indeed, suppose not; without loss of generality, Ti < Tj . If so, then the result that we

proved shows that types θi > Ti
ri|Li| must concede not earlier than min (ri |Li| θi, Tj), which satisfies

min (ri |Li| θi, Tj) > min (Ti, Tj) = Ti, which contradicts the definition of Ti. Thus, suppose, to

obtain a contradiction, that Ti = Tj = T < ∞. We have that types of player i that satisfy

θi ≥ T
ri|Li| must concede no earlier than T , which implies that H

σ
i (·) has an atom at T . Similarly,

types of player j that satisfy θj ≥ T
rj |Lj | must concede no earlier than T as well, which implies that

Hσ
j (·) has an atom at T . However, this contradicts Lemma B3. Thus, we must have Ti = Tj =∞,

in which case the statement is equivalent to the version that was already proved, which completes

the proof.

We next establish an upper bound for the concession time of each player of each type.

Lemma B7 For almost all θi player i with type θi concedes no later than time t̄i (θi) =

4
√
θi (Wi − Li) max

(
θir2

i (Wi − Li) , 1
)
. In other words, Hσ

i (θi; t̄i (θi)) = 1.

Proof. Suppose not, then a positive measure of types of player i, θi it is a best response to concede

at some time t̃ (θi) > t̄i (θi). From Lemma B3 it follows that Hσ
j (·) is continuous at t̃ (θi) for all
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such θi. Notice that we can always pick θi so that Hσ
j (·) is continuous at t̄i(θi)2 , since the set where

Hσ
j (·) is discontinuous is at most countable. Denote t0 = t̄i(θi)

2 and let t̄ = t̄i (θi) and t̃ = t̃i (θi) for

this particular value of θi.

By Lemma B6, we have Hσ
j (t̄) < 1. By (B4), we have

Vi (t0)− Vi
(
t̃
)

=

∫ t̃

t0

(
e−rit0Li − e−riτWi

)
dHσ

j (τ) +
(
1−Hσ

j

(
t̃
)) (

e−rit0 − e−ri t̃
)
Li

+
1

θir2
i

(∫ t̃

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

))
.

Take the first term; since Wi ≥ 0 > Li, we have

0 ≥
∫ t̃

t0

(
e−rit0Li − e−riτWi

)
dHσ

j (τ) +
(
1−Hσ

j

(
t̃
)) (

e−rit0 − e−ri t̃
)
Li

≥ −
(
Hσ
j

(
t̃
)
−Hσ

j (t0)
)
e−rit0Wi +

(
1−Hσ

j (t0)
)
e−rit0Li

≥ −
(
1−Hσ

j (t0)
)
e−rit0 (Wi − Li) .

Now consider the last term. Suppose first that Hσ
j

(
t̃
)
≤ 1+Hσ

j (t0)

2 , so 1−Hσ
j

(
t̃
)
≥ 1−Hσ

j (t0)

2 . In

this case,

1

θir2
i

(∫ t̃

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

))
≥ 1

θir2
i

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

)
≥ 1

θir2
i

1

2

(
1−Hσ

j (t0)
) (
z
(
t̃
)
− z (t0)

)
.

We have

z
(
t̃
)
− z (t0) ≥ z (2t0)− z (t0) = e−rit0

(
1 + rit0 − e−rit0 − 2rit0e

−rit0) > e−rit0rit0×min

(
rit0
2
, 1

)
;

the latter inequality follows from 1 + x− e−x− 2xe−x > min
(
x, x

2

2

)
for all x > 0. Consequently, in

this case (since Hσ
j (t0) ≤ Hσ

j (t̄) < 1),

1

θir2
i

(∫ t̃

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

))
(B5)

>
(
1−Hσ

j (t0)
)
e−rit0

1

θir2
i

min

(
rit0
2
,

(
rit0
2

)2
)
. (B6)

with a strict inequality.

Now suppose that Hσ
j

(
t̃
)
>

1+Hσ
j (t0)

2 , so Hσ
j

(
t̃
)
−Hσ

j (t0) >
1−Hσ

j (t0)

2 . Then

1

θir2
i

(∫ t̃

0
(z (τ)− z (0)) dHσ

j (τ) +
(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (0)

))

≥ 1

θir2
i

∫ t̃

t0

(z (t0)− z (0)) dHσ
j (τ) ≥ 1

θir2
i

(
Hσ
j

(
t̃
)
−Hσ

j (t0)
)
z (t0)

≥ 1

θir2
i

1

2

(
1−Hσ

j (t0)
)
z (t0)
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But we have z (t0) > e−rit0 min
(

(rit0) , (rit0)2

2

)
, which is true because ex (1− e−x − xe−x) = ex −

1− x > x2

2 ≥ min
(
x, x

2

2

)
. Thus, in this case, the same inequality (B5) holds.

Consider again

Vi (t0)− Vi
(
t̃
)
> −

(
1−Hσ

j (t0)
)
e−rit0 (Wi − Li) +

(
1−Hσ

j (t0)
)
e−rit0

1

θir2
i

min

(
rit0
2
,

(
rit0
2

)2
)
.

(B7)

Let us show that the right-hand side equals 0. We have, by definition of t0, t0 = t̄
2 =

2
√
θi (Wi − Li) max

(
θir2

i (Wi − Li) , 1
)
. Consider two cases. First, if θir2

i (Wi − Li) ≥ 1, then

t0 = 2θiri (Wi − Li), and furthermore rit0
2 = θir

2
i (Wi − Li) ≥ 1, which implies rit0

2 ≤
(
rit0

2

)2
. This

means that the right-hand side of (B7) equals(
1−Hσ

j (t0)
)
e−rit0

(
− (Wi − Li) +

1

θir2
i

rit0
2

)
=

(
1−Hσ

j (t0)
)
e−rit0

(
− (Wi − Li) +

1

θir2
i

θir
2
i (Wi − Li)

)
= 0.

Second, if θir2
i (Wi − Li) < 1, then t0 = 2

√
θi (Wi − Li), and furthermore rit0

2 =
√
θir2

i (Wi − Li) <
1, which implies rit0

2 >
(
rit0

2

)2
. In this case, the right-hand side of (B7) equals

(
1−Hσ

j (t0)
)
e−rit0

(
− (Wi − Li) +

1

θir2
i

(
rit0
2

)2
)

=
(
1−Hσ

j (t0)
)
e−rit0

(
− (Wi − Li) +

1

θir2
i

θir
2
i (Wi − Li)

)
= 0.

We have thus proved that Vi (t0)− Vi
(
t̃
)
> 0. But this implies that conceding at t̃ cannot be a

best response for player i with type θi. This is a contradiction that completes the proof.

The following is a simple corollary, which documents the types that must concede before given

time t.

Lemma B8 Take some t > 0; then all types θi ≤ θ̂, where θ̂ = 1
Wi−Li

t
4 min

(
t
4 ,

1
ri

)
, concede on or

before time t.

Proof. Suppose first that t
4 ≤

1
ri
. Then θ̂ = 1

Wi−Li
t2

16 , and θ̂r
2
i (Wi − Li) =

(
tri
4

)2 ≤ 1.In that case,

4
√
θi (Wi − Li) max

(
θir2

i (Wi − Li) , 1
)
≤ 4

√
θ̂ (Wi − Li) max

(
θ̂r2
i (Wi − Li) , 1

)
= 4

√
θ̂ (Wi − Li) = t,

and thus such type θ concedes no later than time t.

Now suppose t
4 >

1
ri
. Then θ̂ = 1

Wi−Li
t

4ri
, and θ̂r2

i (Wi − Li) = tri
4 > 1.In that case,

4
√
θi (Wi − Li) max

(
θir2

i (Wi − Li) , 1
)
≤ 4

√
θ̂ (Wi − Li) max

(
θ̂r2
i (Wi − Li) , 1

)
= 4θ̂ (Wi − Li) ri = t,
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and thus such type θ concedes no later than time t in this case as well.

We now use these results to show that if an opponent does not concede on a certain interval,

then the types of the player that concede on this interval have a particular form.

Lemma B9 Suppose that for some a < b, player j concedes on (a, b) with probability 0. Then if

player i with type θi concedes on this interval with a positive probability, then θi ∈
(

a
ri|Li| ,

b
ri|Li|

)
,

so limε↘0H
σ
i (b− ε) − Hσ

i (a) ≤ exp
(
− a
λiri|Li|

)
− exp

(
− b
λiri|Li|

)
. Furthermore, if some type θi

concedes at t ∈ (a, b), then θi = t
ri|Li| .

Proof. Consider the case Li = 0. Suppose, to obtain a contradiction, that some type θi concedes

at t̃ ∈ (a, b). By Lemma B3, Hσ
j (·) is continuous at t̃. Take t0 ∈

(
a, t̃
)
such that Hσ

j (·) is continuous
at t0. By Lemma B5, we have

Vi (t0)− Vi
(
t̃
)

=
1

θir2
i

(∫ t̃

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

))
.

Since b < Tj , we have Hσ
j

(
t̃
)
≤ Hσ

j (b) < 1 by definition of Tj (see Lemma B6). Thus, the latter

term is positive, which implies that Vi (t0)− Vi
(
t̃
)
> 0, a contradiction.

Now suppose Li < 0, and some type θi concedes at t̃ ∈ (a, b). Again, Hσ
j is continuous at t̃ and

we can pick t0 ∈
(
a, t̃
)
such that it is also continuous at t0. We have, by (B4), that

Vi (t0)− Vi
(
t̃
)

=

∫ t̃

t0

(
e−rit0Li − e−riτWi

)
dHσ

j (τ) +
(
1−Hσ

j

(
t̃
)) (

e−rit0 − e−ri t̃
)
Li

+
1

θir2
i

(∫ t̃

t0

(z (τ)− z (t0)) dHσ
j (τ) +

(
1−Hσ

j

(
t̃
)) (

z
(
t̃
)
− z (t0)

))

=
(
1−Hσ

j

(
t̃
))((

e−rit0 − e−ri t̃
)
Li +

1

θir2
i

(
z
(
t̃
)
− z (t0)

))
≥

(
1−Hσ

j

(
t̃
)) (

e−rit0 − e−ri t̃
)(

Li +
1

θir2
i

ria

)
,

where we used Lemma B2 to establish the last inequality. If θi < a
ri|Li| , then the latter factor

satisfies

Li +
1

θir2
i

ria > Li + |Li|+
1

θir2
i

(
−e−ri t̃ − rit̃e−ri t̃ + e−rit0 + rit0e

−rit0
)

=
(
e−rit0 − e−ri t̃

)
Li +

1

θir2
i

(
e−rit0 − e−ri t̃

)
ria

>
(
e−rit0 − e−ri t̃

)
(Li + |Li|) = 0,

so there is a profitable deviation.
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Now take t1 arbitrarily close to b+t̃
2 so that Hσ

j is continuous at t1; we have

Vi (t1)− Vi
(
t̃
)

=

∫ t1

t̃

(
e−riτWi − e−ri t̃Li

)
dHσ

j (τ)−
(
1−Hσ

j (t1)
) (
e−ri t̃ − e−rit1

)
Li

− 1

θir2
i

(∫ t1

t̃

(
z (τ)− z

(
t̃
))
dHσ

j (τ) +
(
1−Hσ

j (t1)
) (
z (t1)− z

(
t̃
)))

=
(
1−Hσ

j (t1)
)(
−
(
e−ri t̃ − e−rit1

)
Li −

1

θir2
i

(
z (t1)− z

(
t̃
)))

≥
(
1−Hσ

j (t1)
) (
e−ri t̃ − e−rit1

)(
−Li −

1

θir2
i

rib

)
,

again using Lemma B2. Notice that if θi > b
ri|Li| , then the latter factor satisfies

−Li −
1

θir2
i

rib > −Li − |Li| = 0,

so again there is a profitable deviation.

Thus, if θi concedes at some t̃ ∈ (a, b), then θi ∈
(

a
ri|Li| ,

b
ri|Li|

)
. Notice that by the same

argument, since t̃ ∈
(
t̃− ε, t̃+ ε

)
for small ε, it must be that θi ∈

(
t̃−ε
ri|Li| ,

t̃+ε
ri|Li|

)
, so θi = t̃

ri|Li| .

Lastly, the share of types θi ∈
(

a
ri|Li| ,

b
ri|Li|

)
is exp

(
− a
λiri|Li|

)
− exp

(
− b
λiri|Li|

)
, and therefore the

share of types who concede on (a, b) cannot be larger than that. This completes the proof.

We now have enough results to establish that Hσ
j (·) is Lipschitz continuous.

Lemma B10 On any interval 0 < a < b < Tj, Hσ
j (·) satisfies a Lipschitz condition with

K = Kj (a, b) = max

(
1

λjrj |Lj |
e
− a

λjrj|Lj| , erib−1

a
4 min

(
ari
4 , 1

)) .
Proof. Suppose not, then by Lemma B1 there is q ∈ (a, b) and ε ∈ (0, q − a) such that for any

p ∈ (q − ε, q), Hσ
j (q)−Hσ

j (p) > K (q − p). Since p > a, we have that only types with θi > θ̂, where
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θ̂ = 1
Wi−Li

a
4 min

(
a
4 ,

1
ri

)
can concede on or after time p. For such θi, we use Lemma B5 to consider

Vi (q)− Vi (p) =

∫ q

p

(
e−riτWi − e−ripLi

)
dHσ

j (τ)−
(
1−Hσ

j (q)
) (
e−rip − e−riq

)
Li

− 1

θir2
i

(∫ q

p
(z (τ)− z (p)) dHσ

j (τ) +
(
1−Hσ

j (q)
)

(z (q)− z (p))

)
≥

(
e−riqWi − e−ripLi

) (
Hσ
j (q)−Hσ

j (p)
)
−
(
1−Hσ

j (q)
) (
e−rip − e−riq

)
Li

− 1

θir2
i

(
(z (q)− z (p))

(
Hσ
j (q)−Hσ

j (p)
)

+
(
1−Hσ

j (q)
)

(z (q)− z (p))
)

= e−riq
(
Hσ
j (q)−Hσ

j (p)
)
Wi −

(
e−rip

(
1−Hσ

j (p)
)
Li + e−riq

(
1−Hσ

j (q)
))
Li

− 1

θir2
i

(z (q)− z (p))
(
1−Hσ

j (p)
)

≥ e−riq
(
Hσ
j (q)−Hσ

j (p)
)
Wi −

(
e−riq

(
1−Hσ

j (p)
)
Li + e−riq

(
1−Hσ

j (q)
))
Li

− 1

θir2
i

(q − p) ri
e

(
1−Hσ

j (p)
)

≥ e−riq
((
Hσ
j (q)−Hσ

j (p)
))

(Wi − Li)−
1

θirie
(q − p)

> e−riqK (q − p) (Wi − Li)−
1

θ̂rie
(q − p)

≥ e−riqK (q − p) (Wi − Li)−
1

a
4 min

(
a
4 ,

1
ri

)
rie

(q − p) (Wi − Li)

≥ (q − p) (Wi − Li)

e−riq erib−1

a
4 min

(
ari
4 , 1

) − 1

a
4 min

(
a
4 ,

1
ri

)
rie

 ≥ 0;

here, we used q < b for the last inequality, and also Lagrange theorem to get z (q) − z (p) =

(q − p)xr2
i e
−xri for some x ∈ (p, q), and then ye−y ≤ 1

e for all y, in particular y = xri. Thus, no

type of player i concedes on (p, q).

On the other hand, since player i does not concede on (p, q), then by Lemma B9 (and using that

Hσ
j is continuous on (p, q)), we have

Hσ
j (q)−Hσ

j (p) ≤ exp

(
− p

λjrj |Lj |

)
− exp

(
− q

λjrj |Lj |

)
≤ 1

λjrj |Lj |
exp

(
− p

λjrj |Lj |

)
(q − p) ≤ K (q − p) .

This, however, contradicts the choice of p and q. This contradiction proves that Hσ
j (·) is Lipschitz

continuous on (a, b) with parameter Kj (a, b).

The previous lemma allows us to write the best response mapping in a simple way.

Lemma B11 In equilibrium strategy profile σ, for type θi of player i,

σi (θi) ∈ arg max
t≥0

Vi (t; θi)

= arg max
t≥0

(∫ t

0

(
Wie

−riτ − z (τ)

θir2
i

)
dHσ

j (τ) +
(
1−Hσ

j (t)
)(

e−ritLi −
z (t)

θir2
i

))
. (B8)
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Proof. By Lemma B10, function Hσ
j (·) is continuous on t ∈ (0,∞). Furthermore, by Lemma B6,

it is continuous at 0, and thus it is continuous on (−∞,+∞). Thus, the payoff of player i from

conceding at time t is given by the expression under the integral in (B8), as follows from Lemma

B4, which proves that the optimal strategy must satisfy (B8).

We now show that Vi (t; θi) satisfies increasing differences property.

Lemma B12 Vi (t; θi) satisfies increasing differences property: if θ′i > θi and t′ > t, then

Vi
(
t′; θ′i

)
− Vi

(
t; θ′i

)
> Vi (t′; θi)− Vi (t; θi).

Proof. Consider the difference(
Vi
(
t′; θ′i

)
− Vi

(
t; θ′i

))
−
(
Vi
(
t′; θi

)
− Vi (t; θi)

)
=

1

r2
i

(
1

θi
− 1

θ′i

)(∫ t′

0
z (τ) dHσ

j (τ) +
(
1−Hσ

j

(
t′
))
z
(
t′
))

− 1

r2
i

(
1

θi
− 1

θ′i

)(∫ t

0
z (τ) dHσ

j (τ) +
(
1−Hσ

j (t)
)
z (t)

)
=

1

r2
i

(
θ′i − θi
θ′iθi

)(∫ t′

t
(z (τ)− z (t)) dHσ

j (τ) +
(
1−Hσ

j

(
t′
)) (

z
(
t′
)
− z (t)

))
> 0,

because all the factors are positive.

We use the previous Lemma to establish that each player plays monotone strategies.

Lemma B13 For any θi and θ′i, suppose t ∈ σi (θi) and t′ ∈ σi
(
θ′i
)
. Then θ′i > θi implies t′ ≥ t.

Proof. By Lemma B11, we have Vi (t; θi)− Vi (t′; θi) ≥ 0. Suppose, to obtain a contradiction, that

t > t′; then by Lemma B12, Vi
(
t; θ′i

)
− Vi

(
t′; θ′i

)
> 0. However, this contradicts that t′ is a best

response for type θ′i. This contradiction completes the proof.

We are now able to prove that the intervals of time where either player does not concede coincide

for the two players.

Lemma B14 If player i does not concede on (a, b), so Hσ
i (a) = Hσ

i (b), then the same is true for

player j, so Hσ
j (a) = Hσ

j (b).

Proof. Denote Hσ
i (a) = Hσ

i (b) = hi; since Hσ
i (·) is continuous, we can without loss of generality

assume that a = inf {t ≥ 0 : Hσ
i (t) = hi} and b = sup {t : Hσ

i (t) = hi}. In that case, it must be that
a > 0. Indeed, if a = 0, then Lemma B6 would imply that hi = Hσ

i (0) = 0, in which case there are

no types conceding up until time b, but this would contradict Lemma B7, because limθi→0 t̄i (θi) = 0.

Suppose that the statement is not true, then some type of player j, θ, concedes on (a, b), say

at time t0. If so, by Lemma B9, θ must concede at time t̆j (θ) = rj |Lj | θ, so t0 = t̆j (θ). By

51



Lemma B13, all types θj > θ concede at σj (θj) ≥ t0. On the other hand, all types θj ∈
(

a
rj |Lj | , θ

)
must concede no earlier than time a, and by Lemma B13 they concede no later than t0. This

means, again by Lemma B9, that every θj ∈
(

a
rj |Lj | , θ

)
concedes at t̆j (θj) = rj |Lj | θj . Now,

Lemma B13 implies that no other type of player j concedes on the interval (a, t0). From this (and

continuity), it follows that on [a, t0], the distribution of concession times of player j, Hσ
j (·), is given

by Hσ
j (t) = Pr

(
θj ≤ t

rj |Lj |

)
= 1− e

− t

λjrj|Lj| .
Plugging this expression for Hσ

j (t) into (B8), we see that on t ∈ [a, t0], Vi (t, θi) is given by

Vi (t, θi) =

∫ t

0

(
Wie

−riτ − 1− e−riτ − riτe−riτ
θir2

i

)
e
− τ

λjrj|Lj|
λjrj |Lj |

dτ+e
− t

λjrj|Lj|
(
e−ritLi −

1− e−rit − rite−rit
θir2

i

)
.

Differentiating, we get

∂Vi (t, θi)

∂t
=

(
Wie

−rit − 1− e−rit − riτe−rit
θir2

i

)
e
− t

λjrj|Lj|
λjrj |Lj |

−e
− t

λjrj|Lj|
λjrj |Lj |

(
e−ritLi −

1− e−rit − rite−rit
θir2

i

)
+ e
− t

λjrj|Lj|
(
−rie−ritLi −

r2
i te
−rit

θir2
i

)

= (Wi − Li)
e−rite

− t

λjrj|Lj|
λjrj |Lj |

+ e−rite
− t

λjrj|Lj|
(
−riLi −

t

θi

)
.

Now, by definition of a (and the fact that a > 0) there is some type of player i, θi = θi (ε), that

concedes at t ∈ [a− ε, a] for any ε > 0. Take θ̂ = supε>0 θi (ε); by Lemma B13, type θ̂ of player i

concedes at time t ≥ a and, by continuity of Vi (t, θi), conceding at a is also a best response for him,

and Lemma B6 then implies that θ̂ ≤ a
ri|Li| . This, however, implies that −riLi−

t
θ̂

= ri |Li|
(
1− t

a

)
,

and thus, since Wi − Li > 0,
∂Vi(t,θ̂)

∂t > 0 at t = a. This means, however, that conceding at a is not

a best response for type θ̂. This contradiction completes the proof.

The next results shows that, in fact, there are no gaps, i.e., no intervals where a player does not

concede for any type realization.

Lemma B15 For any 0 ≤ a < b ≤ Ti, Hσ
i (a) < Hσ

i (b).

Proof. Suppose not, so there are a < b such that Hσ
i (a) = Hσ

i (b) = hi. Since Hσ
i (·)

is continuous, we can without loss of generality assume that a = inf {t > 0 : Hσ
i (t) = hi} and

b = sup {t : Hσ
i (t) = hi}. By Lemma B14, Hσ

j (a) = Hσ
j (b), and by the same Lemma B14,

a = inf
{
t > 0 : Hσ

j (t) = hj

}
and b = sup

{
t : Hσ

j (t) = hj

}
.

Let θ̂ be the infimum of the set of types of player i for which it is a best response to concede at

time t ≥ b (this set is nonempty by Lemma B6). This latter set is closed by continuity of Vi (t, θi),

and thus θ̂ belongs to this set. We must have θ̂ ≤ a
ri|Li| ; indeed, if instead θ̂ >

a
ri|Li| , then for all

types θ ∈
(

a
ri|Li| , θ

′
)
, it is not a best response to concede at t ≥ b, but by Lemma B6 it is not a best
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response for them to concede at t ≤ a either, which means that their best responses lie on (a, b),

and given that there is a positive measure of these types, this would contradict the assumption

Hσ
i (a) = Hσ

i (b).

Consider the difference

Vi

(
b, θ̂
)
− Vi

(
a, θ̂
)

=

∫ b

a

(
e−riτWi − e−riaLi

)
dHσ

j (τ)−
(
1−Hσ

j (b)
) (
e−ria − e−rib

)
Li

− 1

θ̂r2
i

(∫ b

a
(z (τ)− z (a)) dHσ

j (τ) +
(
1−Hσ

j (b)
)

(z (b)− z (a))

)

=
(
1−Hσ

j (b)
)((

e−ria − e−rib
)
|Li| −

z (b)− z (a)

θ̂r2
i

)

=
(
1−Hσ

j (b)
) (
e−ria − e−rib

)(
|Li| −

c

θ̂ri

)
<

(
1−Hσ

j (b)
) (
e−ria − e−rib

)(
|Li| −

a

θ̂ri

)
≤ 0,

where we used z (b) − z (a) =
(
e−ria − e−rib

)
ric for some c ∈ (a, b), which is true by (B2). This

proves that Vi
(
a, θ̂
)
> Vi

(
b, θ̂
)
, which implies that b is not a best response of type θ̂, and then some

b′ > b is a best response. However, then no type of player i would concede on the interval [b, b′),

which contradicts the assumption b = sup {t : Hσ
i (t) = hi}. This contradiction that completes the

proof.

The previous results implies that the equilibrium must be in pure strategies.

Lemma B16 For any θ, the set of best responses of player i with type θ is a singleton. In particular,

this player plays a pure strategy.

Proof. Suppose that a, b are in best response set of type θ. Then all players with θi < θ concede

no later than a and all players with θi > θ concede no earlier than b. This implies Hσ
i (a) = Hσ

i (b),

which, however, contradicts Lemma B15. This completes the proof.

Now we can prove that Vi (t; θi) is single-peaked in time t.

Lemma B17 For any θi, Vi (t; θi) is single-peaked in t.

Proof. Suppose not, then Vi (t; θi) has a local minimum at some t0. By Lemma B15, there

is type θ0 that concedes at t0. Consider the case θ0 > θi. By definition of a local minimum,

Vi (t′; θi)−Vi (t0; θi) ≥ 0 for some t′ > t0. Then θ0 > θi implies Vi (t′; θ0)−Vi (t0; θ0) > 0 by Lemma

B12, which contradicts that t0 is a best response for type θ0. If, on the other hand, θ0 < θi, then,

since Vi (t′′; θi)−Vi (t0; θi) ≥ 0 for some t′′ < t0, then Lemma B12 implies Vi (t′′; θ0)−Vi (t0; θ0) > 0,

which again yields a contradiction.The only remaining case is θ0 = θi, but then Vi (t; θi) must have

both a local maximum and a local minimum at t0, i.e., it must be locally constant. However, this

would violate Lemma B16. This contradiction completes the proof.
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We use the previous result to show that Hσ
j (·) is differentiable.

Lemma B18 In every equilibrium σ, Hσ
j (·) is differentiable at all t > 0.

Proof. Notice that Hσ
j (·) is differentiable if and only if Vi (t; θi) is differentiable in t for any θi.

Indeed, by (B4), we have, for every t,

Vi (t; θi) =

∫ t

0

(
Wi −

z (τ)

θir2
i

)
e−riτdHσ

j (τ) +
(
1−Hσ

j (t)
)
e−rit

(
Li −

z (t)

θir2
i

)
= e−rit

(
Li −

z (t)

θir2
i

)
+

∫ t

0

(
Wie

−riτ − Lie−rit −
1

θir2
i

(
e−riτz (τ)− e−ritz (t)

))
dHσ

j (τ) .

Then differentiability of Hσ
j (·) at t implies differentiability of Vi (t; θi) ath that point. The reverse

is also true, provided that the expression under the integral (which is a continuous function of τ)

does not turn to 0 at τ = t. The latter is true, as for τ = t it equals (Wi − Li) e−riτ . Thus, to prove
that Hσ

j (·) is differentiable at some t0, it suffi ces to prove that Vi (t; θ0) is differentiable at t = t0

for some θ0, in particular, for type θ0 that finds it optimal to concede at t0 (such type exists by

Lemma B15).

By our choice of θ0,Vi (t; θ0) achieves a global maximum at t0. Then if a derivative exists, then

it must be 0. Suppose, to obtain a contradiction, that the derivative does not exist, then either left

derivative does not exist or is positive, or right derivative does not exist or is negative. Consider

the former case (the latter case is similar). Then it must be that there exists some ε > 0 and some

sequence {µn} of positive numbers that converges to zero such that

Vi (t0 − µn; θ0)− Vi (t0; θ0)

−µn
≥ ε.

This implies that
Vi (t0 − µn; θ)− Vi (t0; θ)

−µn
> 0

for θ ∈ (θ0 − δ, θ0 + δ) for some δ > 0, where δ may potentially depend on n. However, taking into

account (B4) and the fact that Hσ
j (·) is Lipschitz-continuous by Lemma B10, one can take δ to be

the same for all n. If so, there exists θ′ < θ for which

Vi
(
t0 − µn; θ′

)
− Vi

(
t0; θ′

)
−µn

> 0

for all n, so Vi
(
t0; θ′

)
> Vi

(
t0 − µn; θ′

)
for all n. Since Vi

(
t; θ′
)
is single-peaked by Lemma B17,

this implies that the time of concession of type θ′, denoted by t′, satisfies t′ ≥ t0. On the other

hand, since θ′ < θ, then t′ ≤ t0 by Lemma B13. This implies t′ = t0, and therefore, again by Lemma

B13, all types θ ∈
[
θ′, θ

]
concede at the same moment t0. Consequently, Hσ

i (·) is discontinuous at
t0, which violates Lemma B10. This contradiction completes the proof that Hσ

i (·) is differentiable.

Given differentiability, it is relatively straightforward to show that in equilibrium, certain dif-

ferential equations must be satisfied.

54



Lemma B19 Player i makes optimal decision if and only if the following differential equation is

satisfied:

θ′j (t) =
λj

Wi − Li

(
riLi +

t

θi (t)

)
(B9)

Proof. The optimal decision of player i of type θ is given by (B8). Differentiating and simplifying,

we get

(Wi − Li)
dHσ

j (t)

dt
=
(
1−Hσ

j (t)
)(

riLi +
t

θi

)
.

Notice that if at time t, Hσ
j (t) types conceded, then Hσ

j (t) = 1−e−
θj(t)

λj , where θj (t) is the marginal

type that concedes at time t. This implies that 1 − Hσ
j (t) = e

− θj(t)
λj and

dHσ
j (t)

dt = 1
λj
e
− θj(t)

λj θ′j (t)

(the fact that θj (t) is differentiable follows from θj (t) = −λj ln (1−Hj (t)); this also implies that

its derivative is everywhere has the same sign as
dHσ

j (t)

dt ). Thus, we have

(Wi − Li)
1

λj
e
− θj(t)

λj θ′j (t) = e
− θj(t)

λj

(
riLi +

t

θi (t)

)
,

which is eqivalent to (B9). This completes the proof.

The following Lemma takes the system of equations that must be satisfied in equilibrium, and

shows that it has a unique solution in the feasible domain.

Lemma B20 The system of differential equations

θ′i (t) = A
t

θj (t)
−B;

θ′j (t) = C
t

θi (t)
−D,

where A,B,C,D > 0, has a unique solution among functions (θi (t) , θj (t)) defined on t ∈ (0,∞)

and such that for all such t, θi (t) > 0, θj (t) > 0, and θi, θj is non-decreasing. This solution is given

by θi (t) = κit and θj (t) = κjt, where κi, κj are positive constants satisfying

κi =
A

κj
−B;

κj =
C

κi
−D.

These constants are equal to:

κi =
C −A−BD +

√
(A+ C +BD)2 − 4AC

2d
;

κj =
A− C −BD +

√
(A+ C +BD)2 − 4AC

2B
.
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Proof. We start by verifying that the proposed solution indeed solves the system of differential

equations (this is straightforward).

Conversely, suppose a pair of functions (θi (t) , θj (t)) satisfies the stated conditions and solves

the system of differential equations. Consider pair of functions ηi (t) = θi(t)
t , ηj (t) =

θj(t)
t ; then this

pair satisfies

η′i (t) t+ ηi (t) =
A

ηj (t)
−B;

η′j (t) t+ ηj (t) =
C

ηi (t)
−D;

the conditions on θi (·) and θj (·) imply θi (t) > 0, θj (t) > 0, and furthermore, ηi (t) ≤ C
D , ηj (t) ≤ A

B

(the latter conditions follow from θ′j (t) ≥ 0 and θ′i (t) ≥ 0, respectively. Finally, define τ = ln t ∈
(−∞,∞), and let x (τ) = ηi (eτ ); y (τ) = ηj (eτ ); then the functions x (·) , y (·) satisfy

x′ (τ) = −x (τ) +
A

y (τ)
−B;

y′ (τ) = −y (τ) +
C

x (τ)
−D.

Furthermore, these functions must satisfy 0 < x (τ) ≤ C
D , 0 < y (τ) ≤ A

B . It now suffi ces to prove

that this last stationary system of differential equations does not have solutions that lie entirely

within the rectangle R =
[
0, CD

]
×
[
0, AB

]
for all τ ∈ (−∞,+∞) other than the stationary solution

x (τ) = κi, y (τ) = κj .

It is straightforward to verify that (κi, κj) is the only critical point lying in the rectangle R (there

is another critical point outside this rectangle). Indeed, substituting κj = C
κi
−D into κi = A

κj
−B,

we get the following equation on κi:

Dκ2
i + (A− C +BD)κi −BC = 0.

It therefore has a unique positive root, given by the formula above, whereas the other root is

negative. Plugging it back into κj = C
κi
−D, we get the formula for κj . Finally, it is straightforward

to check that κi < C
D is satisfied: indeed,

C

D
−
C −A−BD +

√
(A+ C +BD)2 − 4AC

2D
=
C +A+BD −

√
(A+ C +BD)2 − 4AC

2D
> 0;

similarly, κj < A
B also holds.

Our next step is to prove that this is a saddle point. To verify the latter claim, consider the

linearization of the system around this point:

x′ (τ) = −κi − (x (τ)− κi) +
Aκj
κ2
j

− A

κ2
j

(y (τ)− κj)−B + · · · = − (x (τ)− κi)−
A

κ2
j

(y (τ)− κj) ;

y′ (τ) = −κj − (y (τ)− κj) +
Cκi
κ2
i

− C

κ2
i

(x (τ)− κi)−D + · · · = − C
κ2
i

(x (τ)− κi)− (y (τ)− κj) .
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Consider the determinant ∣∣∣∣∣ −1 − A
κ2j

− C
κ2i

−1

∣∣∣∣∣ = 1− AC

κ2
iκ

2
j

< 0;

the latter holds because κi = A
κj
− B implies κi < A

κj
and κj = C

κi
− D implies κj < C

κi
, and

multiplying the two inequalities yields κ2
iκ

2
j < AC. This already implies that the critical point is a

saddle point (it is straightforward to check that the eigenvalues of the corresponding characteristic

polynomial are −1±
√

AC
κ2i κ

2
j
, which thus have different signs.

Now suppose, to obtain a contradiction, that a different solution to the system of differential

equation that entirely lies within the rectangle R exists. By Poincaré-Bendixson theorem (applied

to the open subset (0,+∞)× (0,+∞)), the limit set for the corresponding trajectory at −∞ or +∞
must be either the critical point, or a periodic orbit, or the critical point together with an orbit

connecting it to itself (a homoclinic orbit). If it is the critical point (κi, κj), then the trajectory

connects this point to itself, in which case there must be another critical point in the interior of

this trajectory, which as we know is not the case. For the same reason the latter case is ruled out.

Finally, if the limit is a periodic orbit, then this periodic orbit must include include a critical point

in its interior. However, since the only criticaly point is a saddle point, this is impossible, as follows

trivially from considering index of the vector field (the periodic orbit must have index +1 whereas

the saddle point has index −1). This proves that there is no nonstationary solution to the dynamic

system lying within R, which proves that the original system of differential equations has a unique

solution.

From the previous two lemmas, we find that the equilibrium must satisfy a certain system of

equations, and vice versa, that the solution to this system indeed corresponds to an equilibrium.

Lemma B21 There exists a unique equilibrium, given by ti (θi) = θi
κi
, tj (θj) =

θj
κj
, where κi and

κj are computed for A = λi
Wj−Lj , B = − λi

Wj−Lj rjLj, C =
λj

Wi−Li , D = − λj
Wi−Li riLi.

Proof. From Lemma B20 it follows that there are no other solutions that satisfy (B9) for both i

and j, and by Lemma B19 no other strategies can be equilibrium. It remains to verify that these

strategies are indeed best responses to one another. By symmetry, it suffi ces to do so for player i

only.

For player j, we have Hj (t) = Pr
(
θj
κj
≤ t
)

= Pr (θj ≤ κjt) = 1 − exp
(
−κjt

λj

)
. The payoff of

player i of type θi from conceding at time t is therefore, as follows from (B3),

Vi (θi, t) =

∫ t

0

(
Wie

−riτ − z (τ)

θir2
i

)
κj
λj

exp

(
−κjτ
λj

)
dτ + exp

(
−κjt
λj

)(
e−ritLi −

z (t)

θir2
i

)
.
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Differentiating, we get

∂

∂t
Vi (θi, t) =

(
Wie

−rit − z (t)

θir2
i

)
κj
λj

exp

(
−κjt
λj

)
− κj
λj

exp

(
−κjt
λj

)(
e−ritLi −

z (t)

θir2
i

)
+ exp

(
−κjt
λj

)(
−rie−ritLi −

te−rit

θi

)
=

(
(Wi − Li)

κj
λj
− riLi −

t

θi

)
exp

(
−
(
κj
λj

+ ri

)
t

)
.

Notice that (Wi − Li) κjλj − riLi −
t
θi
may be rewritten, in our notation, as 1

C

(
κj − C t

θi
+D

)
. By

definition of κi and κj , κj = C
κi
−D, and thus ∂

∂tVi (θi, t) = 0 if and only if t = θi
κi
. Thus, there is

a unique point on (0,+∞) where ∂
∂tVi (θi, t) = 0. Thus, to verify that this point t = θi

κi
is a global

maximum it suffi ces to check the second-order condition. We have

∂2

∂t2
Vi (θi, t) = − 1

θi
exp

(
−
(
κj
λj

+ ri

)
t

)
−
(

(Wi − Li)
κj
λj
− riLi −

t

θi

)(
κj
λj

+ ri

)
exp

(
−
(
κj
λj

+ ri

)
t

)
;

if t = θi
κi
then the second term vanishes (as follows from ∂

∂tVi (θi, t) = 0), and therefore ∂2

∂t2
Vi (θi, t) =

− 1
θi

exp
(
−
(
κj
λj

+ ri

)
θi
κi

)
< 0. This proves that conceding at θi

κi
is a best response for player i. This

proves that the pair of functions form an equilibrium.

The next lemma establishes comparative statics results for this general model.

Lemma B22 The rates of concession of the two players ρi and ρj, are constant over time. The

rate of concession of player i, ρi, is increasing in Wj, Li, λj, rj, and is decreasing in Wi, Lj, λi,

ri. The converse is true for ρj.

Proof. By Lemma B21, we have Hi (t) = 1 − exp
(
−κit

λi

)
and Hj (t) = 1 − exp

(
−κjt

λj

)
, thus the

rates are constant over time and are given by ρi = κi
λi
, ρj =

κj
λj
. This implies that these two rates

may be found as the unique positive solution to the following system of equations:

ρi =
1

Wj − Lj

(
1

λjρj
+ rjLj

)
;

ρj =
1

Wi − Li

(
1

λiρi
+ riLi

)
.

We can rewrite them as (
ρi −

rjLj
Wj − Lj

)
ρj =

1

λj

1

Wj − Lj
;

ρi

(
ρj −

riLi
Wi − Li

)
=

1

λi

1

Wi − Li
.

Both equations define hyperbolas on the
(
ρi, ρj

)
plane that have a unique intersection in the first

quadrant. The first hyperbola has asymptotes ρi =
rjLj
Wj−Lj < 0 and ρj = 0, the second one has

asymptotes ρi = 0 and ρj = riLi
Wi−Li < 0. Denoting the equilibrium values with asterisks, we get that

for 0 < ρi < ρ∗i , the first hyperbola lies below the second, and for ρi > ρ∗i , the opposite is the case.
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Consider the comparative statics with respect to some parameter, say Wj . If it increases, the

second hyperbola does not change. For the first one, the value of ρi decreases for any given ρj , so

the first hyperbola is moving left. This implies that ρi increases and ρj decreases along the first

hyperbola. The comparative statics with respect to the other parameters are derived similarly. This

completes the proof.

We conclude the analysis by calculating the expected payoffs of the players. We start by com-

puting payoff of a player after he learns his type.

Lemma B23 The expected payoff of player i of type θi from terminating at time t, if player j

concedes at rate ρj is given by

Vi (t) = Wi

ρj
ρj + ri

(
1− e−(ρj+ri)t

)
+ Lie

−(ρj+ri)t

+
1

θi
(
ρj + ri

)2 (−1 +
(
1 +

(
ρj + ri

)
t
)
e−(ρj+ri)t

)
. (B10)

It is strictly increasing in ρj for any fixed t > 0.

Proof. We have Hj (t) = 1− exp
(
−ρjt

)
. In this case, integrating (B3) yields

Vi (t) =

∫ t

0

(
Wie

−riτ − 1− e−riτ − riτe−riτ
θir2

i

)
ρje
−ρjτdτ + e−ρjt

(
Lie
−rit − 1− e−rit − rite−rit

θir2
i

)
= Wi

ρj
ρj + ri

(
1− e−(ρj+ri)t

)
− 1

θir2
i

(
1− e−ρjt

)
+

1

θir2
i

ρj
ρj + ri

(
1− e−(ρj+ri)t

)
+

1

θir2
i

riρj(
ρj + ri

)2 (1−
(
1 + rit+ ρjt

)
e−(ρj+ri)t

)
+ e−ρjt

(
Lie
−rit − 1− e−rit − rite−rit

θir2
i

)

= Wi

ρj
ρj + ri

(
1− e−(ρj+ri)t

)
+ Lie

−(ρj+ri)t − 1

θir2
i

+
1

θir2
i

(
ρj
(
ρj + 2ri

)(
ρj + ri

)2 +
r2
i

(
1 +

(
ρj + ri

)
t
)(

ρj + ri
)2 e−(ρj+ri)t

)

= Wi

ρj
ρj + ri

(
1− e−(ρj+ri)t

)
+ Lie

−(ρj+ri)t +
1

θi
(
ρj + ri

)2 (−1 +
(
1 +

(
ρj + ri

)
t
)
e−(ρj+ri)t

)
.

Notice that the first term is increasing in ρj (both factors are increasing in ρj and are positive).

The second term is negative, but is decreasing in ρj in absolute terms, and thus is increasing.

Finally, if we denote x =
(
ρj + ri

)
t, the last term equals t2

θix2
(−1 + (1 + x) e−x). We have

d

dx

(1 + x) e−x − 1

x2
=

2−
(
x2 + 2x+ 2

)
e−x

x3
,

which is positive for x > 0, because the numerator equals 0 at x = 0 and is increasing in x:

d

dx

(
2−

(
x2 + 2x+ 2

)
e−x
)

= x2e−x > 0.

Thus, the last term is increasing in x, and since x is increasing in ρj , it is also increasing in ρj .

Lastly, we compute the expected payoff of a player before he learns his type.
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Lemma B24 The expected payoff of player i in equilibrium where players i and j concede at rates

ρi and ρj, respectively, is given by

V̄i = Wi

ρj
ρi + ρj + ri

+ Li
ρi

ρi + ρj + ri
+

1−
(

1 + ρi
ρj+ri

)
ln
(

1 +
ρj+ri
ρi

)
(
ρj + ri

) (
ρi + ρj + ri

)
λi

. (B11)

It is strictly increasing in ρj for any fixed t > 0.

Proof. In equilibrium, player i concedes at optimal time given by t = 1
ρiλi

θi. Plugging this into

(B10), we get

Vi (t) = Wi

ρj
ρj + ri

(
1− e−

ρj+ri
ρiλi

θi

)
+ Lie

− ρj+ri
ρiλi

θi − 1− e−
ρj+ri
ρiλi

θi

θi
(
ρj + ri

)2 +
e
− ρj+ri

ρiλi
θi

ρiλi
(
ρj + ri

) .
To obtain V̄i, we need to integrate Vi (t) over θi, distributed with density 1

λi
e
− θi
λi . We integrate each

term separately. We have∫ ∞
0

e
− ρj+ri

ρiλi
θi 1

λi
e
− θi
λi dθi =

1

λi

∫ ∞
0

e
−
(
ρj+ri
ρi

+1
)
θi
λi dθi =

ρi
ρi + ρj + r

.

Thus,∫ ∞
0

Wi

ρj
ρj + ri

(
1− e−

ρj+ri
ρiλi

θi

)
1

λi
e
− θi
λi dθi = Wi

(
ρj

ρj + ri

(
1− ρi

ρi + ρj + r

))
= Wi

ρj
ρi + ρj + r

and, ∫ ∞
0

Lie
− ρj+ri

ρiλi
θi 1

λi
e
− θi
λi dθi = Li

ρi
ρi + ρj + r

.

To compute the third term, consider the following calculation, which is valid whenever ρj + ri < ρi,

so the series is converging: ∫ +∞

0

1− e−(ρj+ri)
θi
ρiλi

θi
e
− θi
λi dθi

=

∫ +∞

0

∞∑
n=1

(−1)n+1
((
ρj + ri

)
θi
ρiλi

)n
n!θi

e
− θi
λi dθi

=

∞∑
m=0

(−1)m
(
ρj+ri
ρiλi

)m+1

(m+ 1)!

∫ +∞

0
θmi e

− θi
λi dθi

=
∞∑
m=0

(−1)m
(
ρj+ri
ρi

)m+1

(m+ 1)!

∫ +∞

0
xme−xdx

=
∞∑
m=0

(−1)m
(
ρj+ri
ρi

)m+1

m+ 1

=
∞∑
n=1

(−1)n+1
(
ρj+ri
ρi

)n
n

= ln

(
1 +

ρj + ri

ρi

)
.
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Since both the original expression and the last term are analytical functions of ρi on (0,+∞), they

must coincide for all values of ρi (not necessarily satisfying ρj+ri < ρi). Thus, the third term equals
−1

λi(ρj+ri)
2 ln

(
1 +

ρj+ri
ρi

)
. Finally, the last term equals

∫ +∞

0

e
−
(
rj+ri
ρi

+1
)
θi
λi

ρiλ
2
i

(
ρj + ri

) dθi =
λi

ρi
ρi+ρj+ri

ρiλ
2
i

(
ρj + ri

) =
1

λi
(
ρj + ri

) (
ρi + ρj + ri

) .
Summing all the terms yields the desired expression.

Finally, the fact that V̄i is decreasing in ρj is easiest to see from the fact that this was true for

each realization of θi and t = 1
ρiλi

θi (but this may be proven directly).
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